Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxylation, aromatics oxidation, benzene

In addition to nonheme iron complexes also heme systems are able to catalyze the oxidation of benzene. For example, porphyrin-like phthalocyanine structures were employed to benzene oxidation (see also alkane hydroxylation) [129], Mechanistic investigations of this t3 pe of reactions were carried out amongst others by Nam and coworkers resulting in similar conclusions like in the nonheme case [130], More recently, Sorokin reported a remarkable biological aromatic oxidation, which occurred via formation of benzene oxide and involves an NIH shift. Here, phenol is obtained with a TON of 11 at r.t. with 0.24 mol% of the catalyst. [Pg.101]

The incorporation of vanadium(V) into the framework positions of silicalite-2 has been reported by Hari Prasad Rao and Ramaswamy . With this heterogeneons oxidation catalyst the aromatic hydroxylation of benzene to phenol and to a mixtnre of hydroqninone and catechol conld be promoted. A heterogeneons ZrS-1 catalyst, which has been prepared by incorporation of zirconinm into a silicalite framework and which catalyzes the aromatic oxidation of benzene to phenol with hydrogen peroxide, is known as well in the literature. However, activity and selectivity were lower than observed with the analogous TS-1 catalyst. [Pg.528]

Oxidative C-H amination has been an area of intensive research since the publication of CHEC-II(1996). This methodology has been applied to the synthesis of a variety of 1,2-thiazine 1,1-dioxides. In the simple cases, substrates containing an aromatic C-H can be cyclized in the presence of hypervalent iodine. For instance, the reaction of A-methoxy(2-arylethane)sulfonamide 202 with [hydroxyl(tosyloxy)iodo]benzene rapidly affords benzenesulfon-amide 203 in excellent yield (Equation 30) <20030BC1342> see also <2000JOC926> and <2000JOC8391>. [Pg.545]

The 1,2-oxides of benzoic acids are also of interest as possible intermediates in the ortho hydroxylation and oxidative decarboxylation of aromatic acids. Ultraviolet studies indicate that benzene oxide 218 predominantly exists as its... [Pg.122]

Iron substituted aluminophosphate molecular sieves (Fe-AlP04-l 1, Fe-AlP04-5 and Fe-VPI-5) are catalytically active in oxidations of aromatic compounds such as hydroxylation of phenol, benzene, and naphthol, as well as epoxidation of styrene. Catalytic data show that the activities of Fe-AlP04-l 1, Fe-AlP04-5 are comparable with that of TS-1 in the oxidation of aromatic compounds. Furthermore, Fe-VPI-5 shows high activity in naphthol hydroxylation by H2O2, while TS-1 is completely inactive due to the small pore size. By comparison of various catalysts, Fe (III) in the framework is considered to be the major active site in the catalytic reactions. [Pg.365]

The liver is home to a wide variety of enzymes that carry out oxidation—the aim is to make unwanted water-insoluble molecules more polar and therefore soluble by peppering them with hydroxyl groups. Unfortunately, some of the intermediates in the oxidation processes are highly reactive epoxides that damage DNA. This is the means by which aromatic hydrocarbons may cause cancer, for example. Note that it is very hard to oxidize benzene by chemical (rather than biological) methods. [Pg.432]

Oxides.—The adsorbent properties of silica gel are known to be highly dependent on the degree of hydroxylation of the surface, and this dependency has been widely investigated in relation to gas adsorption.Khopina and Eltekov have continued earlier work of Kiselev and his collaborators on the influence of the surface chemistry of silica on adsorption from solution. In the present paper a comparison is made of the adsorption of a series of aromatic hydrocarbons (benzene, naphthalene, biphenyl, phenanthrene, o- and m-terphenyl) from n-heptane solution by hydroxylated silica, dehydroxylated silica, and graphitized carbon black, using data obtained in the present work together with earlier published data. The results are analysed in terms of the separation factor(partition coefficient)... [Pg.127]

Radical addition-elimination mechanism with participation of an electrophilic V(IV)-00 species was proposed for aromatic hydroxylation by a peroxo complex [V0(02)(pic)(Hj0)2] (pic=picolinate) that oxidizes benzene at room temperature in CH CN to produce phenol in a yield of 55%, without any coupling products (Scheme 14.4) [33]. A radical anion was suggested as an alternative hydroxylating species [34]. [Pg.371]

Starting from Benzene. In the direct oxidation of benzene [71-43-2] to phenol, formation of hydroquinone and catechol is observed (64). Ways to favor the formation of dihydroxybenzenes have been explored, hence CuCl in aqueous sulfuric acid medium catalyzes the hydroxylation of benzene to phenol (24%) and hydroquinone (8%) (65). The same effect can also be observed with Cu(II)—Cu(0) as a catalytic system (66). Efforts are now directed toward the use of Pd° on a support and Cu in aqueous acid and in the presence of a reducing agent such as CO, H2, or ethylene (67). Aromatic... [Pg.489]

The aminophenols are chemically reactive, undergoing reactions involving both the aromatic amino group and the phenoHc hydroxyl moiety, as weU as substitution on the benzene ring. Oxidation leads to the formation of highly colored polymeric quinoid stmctures. 2-Aminophenol undergoes a variety of cyclization reactions. [Pg.310]

Hydroxyl elimination is necessary for the formation of benzaldehyde and benzoic acid derivatives and, ultimately, benzene and toluene (Fig. 7.46).2 It is proposed that a cleavage between the hydroxyl group and aromatic ring leads to benzenoid species which undergo further cleavage coupled with oxidation to give various decomposition products. [Pg.420]

Phenol is the starting material for numerous intermediates and finished products. About 90% of the worldwide production of phenol is by Hock process (cumene oxidation process) and the rest by toluene oxidation process. Both the commercial processes for phenol production are multi step processes and thereby inherently unclean [1]. Therefore, there is need for a cleaner production method for phenol, which is economically and environmentally viable. There is great interest amongst researchers to develop a new method for the synthesis of phenol in a one step process [2]. Activated carbon materials, which have large surface areas, have been used as adsorbents, catalysts and catalyst supports [3,4], Activated carbons also have favorable hydrophobicity/ hydrophilicity, which make them suitable for the benzene hydroxylation. Transition metals have been widely used as catalytically active materials for the oxidation/hydroxylation of various aromatic compounds. [Pg.277]

The selective hydroxylation, in the presence of aqueous H2O2, of aromatic hydrocarbons such as benzene, toluene, and xylene to phenol, cresols, and xylenols, respectively, occurs easily on TS-1 (33,165,224). Again, a significant contrast between TS-2 and VS-2 in the oxidation of toluene is that when the catalyst is the former, only aromatic ring hydroxylation takes place, although when the catalyst is VS-2, the side chain C-H bonds are also hydroxylated (165, 218,219,225,226) (Table XXVIII). [Pg.111]

Aromatic radical-cations are generated by pulse-radiolysis of benzene derivatives in aqueous solution. Radiolysis generates solvated electrons, protons and hydroxyl radicals. The electrons are converted by reaction with peroxydisulpbate ion to form sulphate radical-anion, which is an oxidising species, and sulphate. In another proceedure, electrons and protons react with dissolved nitrous oxide to form hydroxyl radicals and water, Hydroxyl radicals are then made to react with either thallium(i) or silver(i) to generate thallium(ii) or silver(ll) which are powerfully... [Pg.188]

Besides a variety of other methods, phenols can be prepared by metal-catalyzed oxidation of aromatic compounds with hydrogen peroxide. Often, however, the selectivity of this reaction is rather poor since phenol is more reactive toward oxidation than benzene itself, and substantial overoxidation occurs. In 1990/91 Kumar and coworkers reported on the hydroxylation of some aromatic compounds using titanium silicate TS-2 as catalyst and hydrogen peroxide as oxygen donor (equation 72) . Conversions ranged from 54% to 81% with substituted aromatic compounds being mainly transformed into the ortho-and para-products. With benzene as substrate, phenol as the monohydroxylated product... [Pg.527]

Aromatic alcohols are called phenols. The simplest phenol, also called phenol, forms when a hydroxyl group replaces a hydrogen atom in the benzene ring. Phenol (carbolic acid) was used as an antiseptic in the 1800s. Today other phenol derivatives are used in antiseptic mouthwashes and in cleaning disinfectants such as Lysol. Phenols are easily oxidized, and this makes them ideal substances to use as antioxidants. By adding phenols such as BHT (butylated hydroxy toluene) and BHA (butylated hydroxy anisole) to food, the phenols oxidize rather than the food. [Pg.208]

The initial hydroxylation of benzene, toluene, and other alkylbenzenes is accomplished by multicomponent aromatic ring dioxygenases that introduce two oxygen atoms to form diols.158 Dioxygenation of benzoate yields a diol that can be oxidatively decar-boxylated by reaction with NAD+ (Eq. 25-7) to form catechol.157,162 Toluene gives 3-methylcatechol... [Pg.1437]


See other pages where Hydroxylation, aromatics oxidation, benzene is mentioned: [Pg.111]    [Pg.111]    [Pg.255]    [Pg.100]    [Pg.99]    [Pg.255]    [Pg.371]    [Pg.120]    [Pg.144]    [Pg.93]    [Pg.488]    [Pg.891]    [Pg.66]    [Pg.497]    [Pg.233]    [Pg.318]    [Pg.117]    [Pg.123]    [Pg.68]    [Pg.76]    [Pg.58]    [Pg.149]    [Pg.68]    [Pg.58]    [Pg.537]    [Pg.267]    [Pg.45]    [Pg.492]    [Pg.1059]    [Pg.234]   
See also in sourсe #XX -- [ Pg.50 , Pg.52 ]




SEARCH



Aromatic hydroxylation

Aromatic hydroxyls

Aromatic oxidation

Aromatic oxidation benzene

Aromaticity benzene

Aromatics hydroxylation

Aromatics oxidation

Aromatization, oxidative

Benzene hydroxylation

Benzene oxidation

Benzene oxide

Oxidative hydroxylation

© 2024 chempedia.info