Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl group reactions ester formation

Hydroxyl Group. Reactions of the phenohc hydroxyl group iaclude the formation of salts, esters, and ethers. The sodium salt of the hydroxyl group is alkylated readily by an alkyl hahde (WiUiamson ether synthesis). Normally, only alkylation of the hydroxyl is observed. However, phenolate ions are ambident nucleophiles and under certain conditions, ring alkylation can also occur. Proper choice of reaction conditions can produce essentially exclusive substitution. Polar solvents favor formation of the ether nonpolar solvents favor ring substitution. [Pg.285]

This sequence serves to exemplify the formation and aspects of reactivity of toluene-p-sulphonate esters in monosaccharide systems, and further to illustrate the selective protection afforded to hydroxyl groups by the formation of cyclic acetals by reaction with carbonyl compounds. Thus reaction of methyl a-D-glucopyranoside (26) with benzaldehyde in the presence of zinc chloride gives the 4,6-acetal (27) (Expt 5.118), wherein two fused six-membered rings of the frans-decalin type are present. As a cognate preparation the reaction of benzaldehyde with methyl a-D-galactopyranoside results in a similar conversion to a 4,6-acetal, but in this case the product is the conformationally flexible system of the cis-decalin type, the most likely conformation being that shown below. [Pg.658]

Over the last decade, a considerable number of reactions has been studied (11,35) (i) olefins oxidation (38,39), hydroboration, and halogenation (40) (ii) amines silylation (41,42), amidation (43), and imine formation (44) (iii) hydroxyl groups reaction with anhydrides (45), isocyanates (46), epichloro-hydrin and chlorosilanes (47) (iv) carboxylic acids formation of acid chlorides (48), mixed anhydrides (49) and activated esters (50) (v) carboxylic esters reduction and hydrolysis (51) (vi) aldehydes imine formation (52) (vii) epoxides reactions with amines (55), glycols (54) and carboxyl-terminated polymers (55). A list of all the major classes of reactions on SAMs plus relevant examples are discussed comprehensively elsewhere (//). The following sections will provide a more detailed look at reactions with some of the common functional SAMs, i.e hydroxyl and carboxyl terminated SAMs. [Pg.184]

Vinyl ester resins are produced by the addition of ethylenically unsaturated carbo acids (methacrylic or acrylic acid) to an epoxide resin (usually of the bisphenol epichlorohydrin type). The reaction of acid addition to the epoxide ring (esterification exothermic and produces a hydroxyl group without the formation of by-products. Appropriate diluents and polymerization inhibitors are added during or after esterification. [Pg.221]

Other reactions of carbohydrates include those of alcohols, carboxylic acids, and their derivatives. Alkylation of carbohydrate hydroxyl groups leads to ethers. Acylation of their hydroxyl groups produces esters. Alkylation and acylation reactions are sometimes used to protect carbohydrate hydroxyl groups from reaction while a transformation occurs elsewhere. Hydrolysis reactions are involved in converting ester and lactone derivatives of carbohydrates back to their polyhydroxy form. Enolization of aldehydes and ketones leads to epimerization and interconversion of aldoses and ketoses. Addition reactions of aldehydes and ketones are useful, too, such as the addition of ammonia derivatives in osazone formation, and of cyanide in the Kiliani-Fischer synthesis. Hydrolysis of nitriles from the Kiliani-Fischer synthesis leads to carboxylic acids. [Pg.1019]

A variety of terminal functional groups and their chemical transformations on SAMs have been examined for example, (i) olefins—oxidation [23,24,131,132], hydroboration, and halogenation [23,24] (ii) amines—silyla-tion [145,146], coupling with carboxylic acids [22,146], and condensation with aldehydes [22,147] (iii) hydroxyl groups—reactions with anhydrides [148,149], isocyanates [150], epichlorohydrin [151], and chlorosilanes [152] (iv) carboxylic acids—formation of acyl chlorides [153], mixed anhydrides [154], and activated esters [148,155] (v) carboxylic esters—reduction and hydrolysis [156] (vi) thiols and sulfides—oxidation to generate disulfides [157-159] and sulfoxides [160] and (vii) aldehydes—condensation with active amines [161], Nucleophilic... [Pg.445]

The stereoselective reactions in Scheme 2.10 include one example that is completely stereoselective (entry 3), one that is highly stereoselective (entry 6), and others in which the stereoselectivity is modest to low (entries 1,2,4, 5, and 7). The addition of formic acid to norbomene (entry 3) produces only the exo ester. Reduction of 4-r-butylcyclohexanone (entry 6) is typical of the reduction of unhindered cyclohexanones in that the major diastereomer produced has an equatorial hydroxyl group. Certain other reducing agents, particularly sterically bulky ones, exhibit the opposite stereoselectivity and favor the formation of the diastereomer having an axial hydroxyl groi. The alkylation of 4-t-butylpiperidine with benzyl chloride (entry 7) provides only a slight excess of one diastereomer over the other. [Pg.100]

Hydrazinopyridazines such as hydralazine have a venerable history as anti hypertensive agents. It is of note that this biological activity is maintained in the face of major modifications in the heterocyclic nucleus. The key intermediate keto ester in principle can be obtained by alkylation of the anion of pi peri done 44 with ethyl bromo-acetate. The cyclic acylhydrazone formed on reaction with hydrazine (46) is then oxidized to give the aromatized compound 47. The hydroxyl group is then transformed to chloro by treatment with phosphorus oxychloride (48). Displacement of halogen with hydrazine leads to the formation of endralazine (49). ... [Pg.232]

It will be recalled that one of the key operations in the synthesis of IJK ring system 86 is the intramolecular conjugate addition reaction (see 90—>89, Scheme 17b) to form ring J. In the context of compound 90, the electrophilic a,/ -unsaturated ester moiety and the potentially nucleophilic tertiary hydroxyl group reside in proximal regions of space, a circumstance that would seem to favor the desired cyclization evept (see Scheme 19). Indeed, exposure of a solution of 90 in THFto sodium hydride (1 equiv.) for one hour at 25 °C results in the formation of compound 89 in 92% yield. In... [Pg.764]


See other pages where Hydroxyl group reactions ester formation is mentioned: [Pg.150]    [Pg.554]    [Pg.227]    [Pg.742]    [Pg.221]    [Pg.625]    [Pg.234]    [Pg.516]    [Pg.522]    [Pg.244]    [Pg.51]    [Pg.402]    [Pg.235]    [Pg.4]    [Pg.71]    [Pg.262]    [Pg.3]    [Pg.164]    [Pg.188]    [Pg.202]    [Pg.202]    [Pg.258]    [Pg.422]    [Pg.435]    [Pg.436]    [Pg.442]    [Pg.463]    [Pg.646]    [Pg.762]    [Pg.769]    [Pg.769]    [Pg.778]    [Pg.68]    [Pg.100]    [Pg.143]    [Pg.649]    [Pg.230]    [Pg.229]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Ester formation

Ester groups

Esters Formates

Formate esters

Hydroxyl groups reactions

Hydroxyl, reactions

Hydroxylation reaction

© 2024 chempedia.info