Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl-functionalized polymers using styrene polymerization

A combination of anionic and ATRP was employed for the synthesis of (PEO-b-PS) , n = 3, 4 star-block copolymers [148]. 2-Hydroxymethyl-l,3-propanediol was used as the initiator for the synthesis of the 3-arm PEO star. The hydroxyl functions were activated by diphenylmethyl potassium, DPMK in DMSO as the solvent. Only 20% of the stoichiometric quantity of DPMK was used to prevent a very fast polymerization of EO. Employing pentaerythritol as the multifunctional initiator a 4-arm PEO star was obtained. Well-defined products were provided in both cases. The hydroxyl end groups of the star polymers were activated with D PM K and reacted with an excess of 2-bromopropionylbro-mide at room temperature. Using these 2-bromopropionate-ended PEO stars in the presence of CuBr/bpy the ATRP of styrene was conducted in bulk at 100 °C, leading to the synthesis of the star-block copolymers with relatively narrow molecular weight distributions (Scheme 72). [Pg.85]

The concept of PO macroinitiators centers on the introduction of an initiation moiety into an olefinic polymer chain for polymerization. The most effective route for preparing PO macroinitiators is by employing functional polyolefins containing hydroxyl groups or other reactive groups. These functional POs are prepared by copolymerization of olefins with functional monomers and post-polymerization reaction, as mentioned above. In the case where an initiation moiety was at the chain-end of the polyolefins, a block type copolymer is produced. It has been reported that thiol-terminated PP was used as polymeric chain transfer agent in styrene and styrene/acrylonitrile polymerization to form polypropylene-b/odc-polystyrene (PP-b-PS) and polypropylene-btock-poly(styrene-co-acrylonitrile) (PP-b-SAN) block copolymer [19]. On the other hand, polymer hybrids with block and graft structures can be produced if initiation moieties are in the polymer chain. [Pg.84]

B-90 and B-91, respectively.390 Another route coupled with cationic ring-opening polymerizations is accomplished for polymer B-92 with the use of a hydroxyl-functionalized initiator with a C—Br terminal, where the OH group initiates the cationic polymerizations of 1,3-dioxepane in the presence of triflic acid.329 Polyethylene oxide)-based block copolymers B-93 are obtained by living anionic polymerization of ethylene oxide and the subsequent transformation of the hydroxyl terminal into a reactive C—Br terminal with 2-bromopropionyl bromide, followed by the copper-catalyzed radical polymerization of styrene.391... [Pg.494]

A series of interesting block copolymer architectures has also been prepared by Zhang et al. In a first paper, the synthesis of H-shaped triblock copolymers was demonstrated from enzymatically obtained PCL diol after end-functionalization with a difunctional ATRP initiator [40]. This allowed the growth of two PS chains from each end of the telechelic PCL. When methanol instead of glycol was used as the initiator in the initial enzymatic CL polymerization, a PCL with one hydroxyl endgroup was obtained. Functionalization of this endgroup with the difunctional ATRP initiator and subsequent ATRP of styrene or GMA resulted in Y-shaped polymers (Scheme 3) [41, 42]. [Pg.90]

Polymeric supports can also be used with advantage to form monofunctional moieties from difunctional (Hies. Leznoff has used this principal in the synthesis of sex attractants on polymer supports (67). Starting from a sheap symmetrical diol he blocked one hydroxyl group by the polymer. Functionalization of cross-linked polymers is mostly performed by chloromethylation (65). A very promising method to introduce functional groups into crosslinked styrene-divinylbenzene copolymers is the direct lithiation with butyllithium in presence of N,N,N, N -tetramethyl-ethylenediamine (TMEDA) (69, 70). Metalation of linear polystyrene with butyl-lithium/TMEDA showed no exchange of benzylic hydrogen and a ratio of attack at m/p-position of 2 1 (71). In the model reaction of cumene with amylsodium, a kinetic control of the reaction path is established. After 3h of treatment with amyl-sodiuni, cumene is metalated 42% in a-, 39% m-, and 19% p-position. After 20h the mixture equilibrates to affort 100% of the thermodynamically more stable a-prod-uct (72). [Pg.20]

In the second method, the alkoxyamine-ftmctionalized backbone is prepared by a chemical modification of a preformed polymer. Abbasian and Entezami prepared alkoxyamine-functionalized poly(vinyl chloride) (PVC) in a three-step procedure. PVC was first arylated with toluene by Friedel-Crafts acylation followed by a bromination step using N-bromosuccinimide. The bromine atom was finally reacted via nucleophilic substitution by the TEMPO hydro-xylamine anion. PVC-g-PS was finally obtained after TEMPO-mediated polymerization of styrene. A TEMPO-functionalized isotactic poly(l-butene) macroinitiator was synthesized by Jo et al. who used a rhodium-catalyzed activation of the alkane C-H bonds and subsequent transformations of the boronate ester group into an hydroxyl pendant group. This reactive moiety was then used to attach a TEMPO-based alkoxyamine bearing another hydroxy function by an ether linkage. A method to prepare PE-g-PS from a poly(ethylene-co-m,p--methylstyrene) obtained by metallocene-catalyzed polymerization was also reported. The macroalkoxya-mine was synthesized after bromination with N-bromosuccinimide followed by a nucleophilic reaction with the TEMPO hydroxylamine anion. [Pg.336]


See other pages where Hydroxyl-functionalized polymers using styrene polymerization is mentioned: [Pg.403]    [Pg.24]    [Pg.5]    [Pg.5]    [Pg.103]    [Pg.519]    [Pg.262]    [Pg.238]    [Pg.36]    [Pg.124]    [Pg.566]    [Pg.87]    [Pg.13]    [Pg.439]    [Pg.228]    [Pg.405]    [Pg.161]    [Pg.122]    [Pg.58]    [Pg.371]    [Pg.537]    [Pg.147]    [Pg.158]    [Pg.458]    [Pg.832]    [Pg.50]    [Pg.189]    [Pg.4]    [Pg.81]    [Pg.95]    [Pg.111]    [Pg.510]    [Pg.545]    [Pg.397]    [Pg.561]    [Pg.105]    [Pg.305]    [Pg.237]    [Pg.565]    [Pg.183]   
See also in sourсe #XX -- [ Pg.75 , Pg.77 , Pg.78 , Pg.79 , Pg.81 ]




SEARCH



Hydroxyl functionalities

Hydroxyl functions

Hydroxyl-functionalized polymers

Hydroxyl-functionalized polymers using

Hydroxylated polymers

Polymerized Styrenes

Styrene polymers

Styrenic polymers

© 2024 chempedia.info