Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrosilylation enynes

In the mid 1980s, Voronkov, Lukevics, and coworkers published results demonstrating the strong preference of terminal alkynes to react in platinum catalyzed hydrosilylation in the presence of 1-olefinic groups [10, 11], Enynes were found to give hydrosilylation products predominantly by addition of silanes across the triple bond. To check the versatility of these promising results, 2-allyloxy-3-butyne was chosen as an enyne to be reacted with an a, ui-dihydropoly(dimethylsiloxane) under normal hydrosilylation conditions (10"3 mole percent Pt, 120°C) (Eq. 3). [Pg.255]

These results clearly demonstrate a remarkable regioselectivity in the hydrosilylation of enyne compounds and that this approach works well for syntheses of siloxane polymers with reactive olefinic groups. [Pg.256]

These transformations take advantage of the knowledge obtained from well-established intermolecular reactions (metal-catalyzed hydrosilylation, borostannylation, etc.) and operate in a way that functionalizes both ends of the two unsaturated partners (enyne in this section) in the same manner as in the parent intermolecular reaction.264,265... [Pg.334]

Very recently, Wiedenhoefer272 has devised the first asymmetric 1,6-enyne hydrosilylation/cyclization tandem process using a rhodium(l) catalyst with (R)-276 as chiral ligand where rhodium-BINAP complexes were not effective (Scheme 70). More developments on this reaction are covered in Chapter 11.13. [Pg.334]

The first rhodium-catalyzed reductive cyclization of enynes was reported in I992.61,61a As demonstrated by the cyclization of 1,6-enyne 37a to vinylsilane 37b, the rhodium-catalyzed reaction is a hydrosilylative transformation and, hence, complements its palladium-catalyzed counterpart, which is a formal hydrogenative process mediated by silane. Following this seminal report, improved catalyst systems were developed enabling cyclization at progressively lower temperatures and shorter reaction times. For example, it was found that A-heterocyclic carbene complexes of rhodium catalyze the reaction at 40°C,62 and through the use of immobilized cobalt-rhodium bimetallic nanoparticle catalysts, the hydrosilylative cyclization proceeds at ambient temperature.6... [Pg.506]

A solitary report of enantioselective hydrosilylative cyclization appears in the literature.64 Here, a variety of 1,6-enyne substrates are cyclized in good yields and enantioselectivities, using chirally modified cationic rhodium... [Pg.508]

Rhodium complexes catalyze hydrosilylation-cyclization of 1,6-allenynes in the presence of (MeO SiH.77 To avoid complex product distributions, the use of substrates possessing fully substituted alkyne and allene termini is imperative. As shown in the cyclization of 1,6-allenyne 62a, the regiochemistry of silane incorporation differs from that observed in the rhodium-catalyzed hydrosilylation-cyclization of 1,6-enynes (see Section 10.10.2.3.2). For allenyne substrates, allene silylation occurs in preference to alkyne silylation (Scheme 40). [Pg.516]

A hydrosilylation/cyclization process forming a vinylsilane product need not begin with a diyne, and other unsaturation has been examined in a similar reaction. Alkynyl olefins and dienes have been employed,97 and since unlike diynes, enyne substrates generally produce a chiral center, these substrates have recently proved amenable to asymmetric synthesis (Scheme 27). The BINAP-based catalyst employed in the diyne work did not function in enyne systems, but the close relative 6,6 -dimethylbiphenyl-2,2 -diyl-bis(diphenylphosphine) (BIPHEMP) afforded modest yields of enantio-enriched methylene cyclopentane products.104 Other reported catalysts for silylative cyclization include cationic palladium complexes.105 10511 A report has also appeared employing cobalt-rhodium nanoparticles for a similar reaction to produce racemic product.46... [Pg.809]

Asymmetric cyclization-hydrosilylation of 1,6-enyne 91 has been reported with a cationic rhodium catalyst of chiral bisphosphine ligand, biphemp (Scheme 30).85 The reaction gave silylated alkylidenecyclopentanes with up to 92% ee. A mechanism involving silylrhodation of alkyne followed by insertion of alkene into the resulting alkenyl-rhodium bond was proposed for this cyclization. [Pg.835]

Pt(PPh3)4, PdCl2(PPh3)2 and Pd(PPh3)4 were much less efficient than H2PtCl6 and RhCl(PPh3)3. With these less reactive catalysts, the enyne 133 could be selectively prepared. Subsequent hydrosilylation of 133 also afforded the allene 134. In this stepwise route, two different silyl groups could be introduced into the allenic product. A typical example is illustrated in Scheme 3.68. [Pg.122]

For the selective 1,4-hydrosilylation to 133 giving the allenic product 134, the presence and orientation of the two -SiMe3 groups at the 1- and 4-positions in 133 play important roles. Reaction of the hydrosilanes with the closely related conjugated enynes 136 and 137 in the presence of the Pt or Rh catalyst proceeded in a 1,2-addi-tion manner to produce conjugated dienes instead of allenes [108],... [Pg.122]

Scheme 4.68 Palladium-catalyzed asymmetric hydrosilylation of enynes 261 forming allenylsilanes 267. Scheme 4.68 Palladium-catalyzed asymmetric hydrosilylation of enynes 261 forming allenylsilanes 267.
In analogy with the strategy of carbocyclic construction, 1,6-enynes containing an oxygen heteroatom in the carbon atom sequence have been used for 3,4-disubstituted tetrahydrofuran synthesis. The simplest example is given by the hydrosilylation of enyne at room temperature (Reaction 7.38) [49]. Tetrahydrofurans with an exocyclic methylene functionality can also be prepared from the appropriate alkynes, such as 32, with (TMS)3SiH in refluxing benzene which afforded exclusive formation of the exomethylene in the Z conformation (Reaction 7.39) [50]. [Pg.159]

Analogously to the carbocycle and oxycycle synthesis, cyclic amines can be obtained by the hydrosilylation of a suitable enyne, such as 46 (Reaction 7.54), which gave the six-membered ring via a 6-endo cyclization of the vinyl radical onto the C=N bond [63]. In another example, the isothiocyanide functionality of compounds 47 or 48 reacts with silane under radical conditions... [Pg.164]

Yamamoto has proposed a mechanism for the palladium-catalyzed cyclization/hydrosilylation of enynes that accounts for the selective delivery of the silane to the more substituted C=C bond. Initial conversion of [(77 -C3H5)Pd(GOD)] [PF6] to a cationic palladium hydride species followed by complexation of the diyne could form the cationic diynylpalladium hydride intermediate Ib (Scheme 2). Hydrometallation of the less-substituted alkyne would form the palladium alkenyl alkyne complex Ilb that could undergo intramolecular carbometallation to form the palladium dienyl complex Illb. Silylative cleavage of the Pd-G bond, perhaps via cr-bond metathesis, would then release the silylated diene with regeneration of a palladium hydride species (Scheme 2). [Pg.370]

Cyclization/Hydrosilylation of Enynes and Eneallenes 11.11.3.1 Rhodium Catalysts... [Pg.374]

Gyclization/hydrosilylation of enynes catalyzed by rhodium carbonyl complexes tolerated a number of functional groups, including acetate esters, benzyl ethers, acetals, tosylamides, and allyl- and benzylamines (Table 3, entries 6-14). The reaction of diallyl-2-propynylamine is noteworthy as this transformation displayed high selectivity for cyclization of the enyne moiety rather than the diene moiety (Table 3, entry 9). Rhodium-catalyzed enyne cyclization/hydrosilylation tolerated substitution at the alkyne carbon (Table 3, entry 5) and, in some cases, at both the allylic and terminal alkenyl carbon atoms (Equation (7)). [Pg.374]

Ojima has proposed a mechanism for the rhodium-catalyzed cyclization/hydrosilylation of enynes initiated by oxidative addition of the H-Si bond of the hydrosilane to form the Rh(iii) silyl hydride complex If (Scheme 7). Silylmetallation of the G=G bond of the enyne coupled with coordination of the pendant G=G bond could form... [Pg.374]

Table 3 Rhodium-catalyzed enyne cyclization/hydrosilylation... Table 3 Rhodium-catalyzed enyne cyclization/hydrosilylation...
Widenhoefer and co-workers have developed an effective protocol for the asymmetric cyclization/hydrosilylation of functionalized 1,6-enynes catalyzed by enantiomerically enriched cationic rhodium bis(phosphine) complexes. For example, treatment of dimethyl allyl(2-butynyl)malonate with triethylsilane (5 equiv.) and a catalytic 1 1 mixture of [Rh(GOD)2] SbF6 and (i )-BIPHEMP (5 mol%) at 70 °G for 90 min gave the silylated alkylidene cyclopentane 12 in 81% yield with 98% de and 92% ee (Table 4, entry 1). A number of tertiary silanes were effective for the rhodium-catalyzed asymmetric cyclization/hydrosilylation of dimethyl allyl(2-butynyl)malonate with yields ranging from 71% to 81% and with 77-92% ee (Table 4, entries 1-5). Although the scope of the protocol was limited, a small number of functionalized 1,6-enynes including A-allyl-A-(2-butynyl)-4-methylbenzenesulfonamide underwent reaction in moderate yield with >80% ee (Table 4, entries 6-8). [Pg.376]

Molander has developed effective protocols for the cyclization/hydrosilylation of 1,6-enynes catalyzed by lanthanide metallocene complexes/ For example, reaction of cyclohexyl-substituted 1,6-enyne 15a with phenylsilane catalyzed by Cp 2YMe(THF) in cyclohexane at room temperature for 2h gave silylated alkylidene cyclopentane 16a as a 6.5 1 mixture of trans. cis isomers (Table 5, entry 1). The diastereoselectivity of the reaction depended strongly on the nature of the allylic substituent. For example, yttrium-catalyzed cyclization/ hydrosilylation of the ethyl-substituted enyne 15b gave silylated cyclopentane 16b in 88% yield as a single diastereomer (Table 5, entry 2). [Pg.377]

Yttrium-catalyzed enyne cyclization/hydrosilylation was proposed to occur via cr-bond metathesis of the Y-G bond of pre-catalyst Cp 2YMe(THF) with the Si-H bond of the silane to form the yttrium hydride complex Ig (Scheme 8). Hydrometallation of the C=G bond of the enyne coupled with complexation of the pendant G=G bond could form the alkenylyttrium alkyl complex Ilg. Subsequent / -migratory insertion of the alkene moiety into the Y-C bond of Ilg could form cyclopentylmethyl complex Illg. Silylation of the resulting Y-C bond via cr-bond metathesis could release the silylated cycloalkane and regenerate the active yttrium hydride catalyst. Predominant formation of the /ra //j--cyclopentane presumably results from preferential orientation of the allylic substituent in a pseudo-equatorial position in a chairlike transition state for intramolecular carbometallation (Ilg —IHg). [Pg.377]

Lanthanide-catalyzed enyne cyclization/hydrosilylation was also applied to the synthesis of silylated alkylidene cyclohexane derivatives. For example, reaction of the 3-silyloxy-l,7-enyne 17 with methylphenylsilane catalyzed by Gp 2YMe(THF) at 50°G for 8h gave 18 in quantitative yield as a 4 1 mixture of trans cis isomers (Equation (11)). Employment of methylphenylsilane in place of phenylsilane was required to inhibit silylation of the initially formed yttrium alkenyl complex, prior to intramolecular carbometallation (see Scheme 8). [Pg.378]

Dienes are less reactive toward transition metals than enynes and diynes, and perhaps for this reason, the development of effective catalyst systems for the cyclization/hydrosilylation of dienes lagged behind development of the corresponding procedures for enynes and diynes. The transition metal-catalyzed cyclization/hydrosilylation of dienes was first demonstrated by Tanaka and co-workers in 1994. Reaction of 1,5-hexadiene with phenyl-silane catalyzed by the highly electrophilic neodymium metallocene complex Cp 2NdCH(SiMe2)3 (1 mol%) in benzene at room temperature for 3 h led to 5- ///76 -cyclization and isolation of (cyclopentylmethyl)phenylsilane in 84% yield (Equation (15)). In comparison, neodymium-catalyzed reaction of 1,6-heptadiene with phenylsilane led to 5- X(9-cyclization to form (2-methylcyclopentylmethyl)phenylsilane in 54% yield as an 85 15 mixture of trans. cis isomers (Equation (16)). [Pg.379]

Suisse and co-workers have studied the asymmetric cyclization/silylformylation of enynes employing catalytic mixtures of a rhodium(i) carbonyl complex and a chiral, non-racemic phosphine ligand. Unfortunately, only modest enantioselectivities were realized.For example, reaction of diethyl allylpropargylmalonate with dimethylphenyl-silane (1.2 equiv.) catalyzed by a 1 1 mixture of Rh(acac)(GO)2 and (i )-BINAP in toluene at 70 °G for 15 h under GO (20 bar) led to 90% conversion to form a 15 1 mixture of cyclization/silylformylation product 67 and cyclization/ hydrosilylation product 68. Aldehyde 67 was formed with 27% ee (Equation (46)). [Pg.395]


See other pages where Hydrosilylation enynes is mentioned: [Pg.330]    [Pg.815]    [Pg.122]    [Pg.123]    [Pg.124]    [Pg.173]    [Pg.367]    [Pg.368]    [Pg.374]    [Pg.374]    [Pg.375]    [Pg.378]    [Pg.379]    [Pg.380]    [Pg.72]    [Pg.100]    [Pg.103]    [Pg.103]    [Pg.133]    [Pg.133]   
See also in sourсe #XX -- [ Pg.207 ]




SEARCH



1.3- enyne, hydrosilylation

Enynes

© 2024 chempedia.info