Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon hydrolysis

Higher chlorides, Si2Cle to Si6Cl,4 (highly branched - some cyclic) are formed from SiCU plus Si or a silicide or by amine catalysed disproportionations of Si2Cl,5, etc. Partial hydrolysis gives oxide chlorides, e.g. CUSiOSiCla. SiCU is used for preparation of silicones. [Pg.359]

Note that in the compound (CH3)2Si(OH)2 the silicon atom can hold two OH groups, unlike carbon. It is this property that makes the existence of silicones possible. By variation of the compounds and conditions of hydrolysis, straight chains, rings and cross-linked polymers are obtained, for example ... [Pg.190]

Organosilicon polymers. Silicon resembles carbon in certain respects and attempts have been made to prepare polymers combining carbon and silicon units in the molecule with the object of increasing the heat resistance of polymers. It has been found that the hydrolysis of a dialkyl-dichlorosilicane or an alkyltrichlorosilicane, or a mixture of the two, leads to polymers (Silicones), both solid and liquid, which possess great thermal stability. Thus dimethyldichlorosilicane (I) is rapidly converted by water into the silicol (II), which immediately loses water to give a silicone oil of the type (III) ... [Pg.1020]

Hydrolysis of mixtures of dialkyldichlorosilicanes and alkyltrichloro-silicanes leads inter alia to cross-linked silicones of the type ... [Pg.1020]

Silcones are important products of silicon. They may be prepared by hydrolyzing a silicon organic chloride, such as dimethyl silicon chloride. Hydrolysis and condensation of various substituted chlorosilanes can be used to produce a very great number of polymeric products, or silicones, ranging from liquids to hard, glasslike solids with many useful properties. [Pg.34]

Many organic peroxides of metals have been hydrolyzed to alkyl hydroperoxides. The alkylperoxy derivatives of aluminum, antimony, arsenic, boron, cadmium, germanium, lead, magnesium, phosphoms, silicon, tin, and zinc yield alkyl hydroperoxides upon hydrolysis (10,33,60,61). [Pg.105]

Microscopic sheets of amorphous silica have been prepared in the laboratory by either (/) hydrolysis of gaseous SiCl or SiF to form monosilicic acid [10193-36-9] (orthosihcic acid), Si(OH)4, with simultaneous polymerisation in water of the monosilicic acid that is formed (7) (2) freesing of colloidal silica or polysilicic acid (8—10) (J) hydrolysis of HSiCl in ether, followed by solvent evaporation (11) or (4) coagulation of silica in the presence of cationic surfactants (12). Amorphous silica fibers are prepared by drying thin films of sols or oxidising silicon monoxide (13). Hydrated amorphous silica differs in solubility from anhydrous or surface-hydrated amorphous sdica forms (1) in that the former is generally stable up to 60°C, and water is not lost by evaporation at room temperature. Hydrated sdica gel can be prepared by reaction of hydrated sodium siUcate crystals and anhydrous acid, followed by polymerisation of the monosilicic acid that is formed into a dense state (14). This process can result in a water content of approximately one molecule of H2O for each sdanol group present. [Pg.486]

The most significant difference between the alkoxysilanes and siUcones is the susceptibiUty of the Si—OR bond to hydrolysis (see Silicon compounds, silicones). The simple alkoxysilanes are often operationally viewed as Hquid sources of siUcon dioxide (see Silica). The hydrolysis reaction, which yields polymers of siUcic acid that can be dehydrated to siUcon dioxide, is of considerable commercial importance. The stoichiometry for hydrolysis for tetraethoxysilane is... [Pg.37]

LiquidPha.se. The methyl chloride process with the widest use in the United States is the Hquid-phase methanol hydrochlorination process. SHicone producers use methyl chloride in its manufacture and produce an aqueous hydrochloric acid stream as a by-product. This by-product HCl is converted back to methyl chloride by hydrochlorination. In fact, it is possible to produce methyl chloride directiy from the chioromethylsilane hydrolysis step in the siHcone process (18,19) (see Silicon compounds, silicones). [Pg.514]

Nevertheless Kipping made a number of contributions of value to the modem silicone industry. In 1904 he introduced the use of Grignard reagents for the preparation of chlorosilanes and later discovered the principle of the inter-molecular condensation of the silane diols, the basis of current polymerisation practice. The term silicone was also given by Kipping to the hydrolysis products of the disubstituted silicon chlorides because he at one time considered them as being analogous to the ketones. [Pg.815]

On the commercial scale silicone resins are prepared batchwise by hydrolysis of a blend of chlorosilanes. In order that the final product shall be cross-linked, a quantity of trichlorosilanes must be incorporated into the blend. A measure of the functionality of the blend is given by the R/Si ratio (see Section 29.3). Whereas a linear polymer will have an R/Si ratio of just over 2 1, the ratio when using trichlorosilane alone will be 1 1. Since these latter materials are brittle, ratios in the range 1.2 to 1.6 1 are used in commercial practice. Since chlorophenylsilanes are also often used, the CH3/CgH5 ratio is a further convenient parameter of use in classifying the resins. [Pg.828]

Upon application of the silicone by extrusion, moisture in the atmosphere comes into contact with the silicone surface. The hydrolysis of an acetoxy siloxy group of the diacetoxymethylsiloxy-endblocked-PDMS reactive polymer (II) proceeds and leads to a silanol-endblocked polymer as shown in Scheme 7, where OAc represents the acetoxy (CH3COO-) group. [Pg.683]

Employing silicon alkoxides, the hydrolysis has to be catalyzed by the addition of an acid or a base, and an excess of water is often used. Employing zirconium alkoxides, the hydrolysis reaction proceeds much faster than the condensation so that the product is obtained as a precipitate rather than a gel. [Pg.541]

Sprung, M. M. Recent Progress in Silicone Chemistry. I. Hydrolysis of Reactive Silane Intermediates, Vol. 2, pp. 442—464. [Pg.160]

Starting from (OC)5MnSiR2H (R = Me, Ph, Cl), the p-silylene complex 70 is accessible via the oxidative addition of the Si —H bond to Pt(C2H4.)(PPh3)2 and Pt(PPh3)4, respectively. Structure 70 can be functionalized by displacement of the phosphine ligands alcoholysis and hydrolysis of the compound 70 leads to silicon-free complexes [175]. [Pg.34]


See other pages where Silicon hydrolysis is mentioned: [Pg.359]    [Pg.359]    [Pg.359]    [Pg.359]    [Pg.190]    [Pg.1009]    [Pg.269]    [Pg.690]    [Pg.913]    [Pg.265]    [Pg.297]    [Pg.40]    [Pg.58]    [Pg.355]    [Pg.91]    [Pg.817]    [Pg.403]    [Pg.405]    [Pg.410]    [Pg.682]    [Pg.691]    [Pg.176]    [Pg.114]    [Pg.345]    [Pg.396]    [Pg.66]    [Pg.906]    [Pg.953]    [Pg.146]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Functional and Mixed Ligand Silicon Alkoxides for More Facile Hydrolysis

Hydrolysis of Silicon Compounds

Hydrolysis of silicon alkoxides

Hydrolysis reactions silicon alkoxides

Hydrolysis, silicon derivatives

Reactions silicon hydrolysis

Silicon complexes hydrolysis

Silicon vapor phase hydrolysis

© 2024 chempedia.info