Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation, catalytic enamines

Table 34.7 Selected results for the enantioselective hydrogenation of enamines (for structures, see Fig. 34.12) Catalytic system, reaction conditions, enantioselectivity, productivity and activity. Table 34.7 Selected results for the enantioselective hydrogenation of enamines (for structures, see Fig. 34.12) Catalytic system, reaction conditions, enantioselectivity, productivity and activity.
Prior to the beginning of our work on sitagliptin, there had been some reports in the literature of catalytic asymmetric hydrogenation of enamines to access chiral secondary amines [19]. The synthesis of P-amino acids had also been established by catalytic asymmetric hydrogenation of enamides [20]. All these reports relied on N-acylenamines as substrates, since it was believed that the N-acyl group was required in order to achieve good reactivity and selectivity [21]. [Pg.116]

The diversity requirement of chiral amines in the synthesis of natural products and chiral drugs is everlasting and the most studies about the catalytic asymmetric hydrogenation of enamines have dealt with simple substrates to date. Hence, it is necessary to explore highly efficient enantioselective protocol to provide more complex and also industrially useful chiral amines. We are confident that the easily accessible and changeable monodentate phosphorus hgands will find a wide appli cation in this field. [Pg.269]

The reduction of the double bond of an enamine is normally carried out either by catalytic hydrogenation (MS) or by reduction with formic acid (see Section V.H) or sodium borohydride 146,147), both of which involve initial protonation to form the iminium ion followed by hydride addition. Lithium aluminum hydride reduces iminium salts (see Chapter 5), but it does not react with free enamines except when unusual enamines are involved 148). [Pg.164]

Enamines containing one -hydrogen atom react with the lactone dimer of dimethylketene to form aminocyclohexanediones 116). Polycondensation of acetone diethyl ketal takes place by treating it with morpholine and a catalytic amount of p-toluenesulfonic acid while distilling off the ethanol formed 117-119). The resulting spiran, bicyclo, and cyclooctadienone products differ from the known polycondensation products of acetone, and hence their formation probably involves enamine intermediates 119). [Pg.233]

The intramolecular cyclization of enolate of l-tryptophyl-3-((3-ketobutyl) pyridinium bromide (160) afforded enamine 161, which undergoes stereoselective acid cyclization with cone. HCl to give the pentacyclic ketone 162 (Catalytic hydrogenation of 162 led to (d,l)-pseudoyohimbone (163) (76JA3645). Again, H3-H15 were found to have the tmns configuration in 162. [Pg.301]

Although catalytic hydrogenation is the method most often used, double bonds can be reduced by other reagents, as well. Among these are sodium in ethanol, sodium and rerr-butyl alcohol in HMPA, lithium and aliphatic amines (see also 15-14), " zinc and acids, sodium hypophosphate and Pd-C, (EtO)3SiH—Pd(OAc)2, trifluoroacetic acid and triethylsilane (EtsSiH), and hydroxylamine and ethyl acetate.However, metallic hydrides, such as lithium aluminum hydride and sodium borohydride, do not in general reduce carbon-carbon double bonds, although this can be done in special cases where the double bond is polar, as in 1,1-diarylethenes and in enamines. " °... [Pg.1007]

Despite the remarkable enantioselectivities observed with the Ti-ebthi catalyst for the imine and enamine hydrogenation, we consider its technical potential rather low. The ligand is difficult to prepare, the activation of the catalyst precursor is tricky, for the moment the catalytic activity is far too low for preparative purposes, and last - but not least - its tolerance for other functional groups is low. [Pg.1211]

The utilization of the Robinson annellation method for the synthesis of cory-nanthe-type alkaloids has been thoroughly investigated by Kametani and coworkers (149-152). The tetracyclic ring system was efficiently formed via the Michael addition of dimethyl 3-methoxyallylidenemalonate (247) to the enamine derived from 3,4-dihydro-1 -methyl-(3-carboline (150). Alkylation of 248, followed by hydrolysis and decarboxylation, resulted in a mixture of stereosiomeric enamides 250 and 251. Hydrogenation of 250 afforded two lactams in a ratio of 2 1 in favor of the pseudo stereoisomer 253 over the normal isomer 252. On the other hand, catalytic reduction of 251 gave 254 as the sole product in nearly quantitative yield. Deprotection of 254, followed by lithium aluminum hydride reduction, yielded ( )-corynantheidol (255) with alio relative configuration of stereo centers at C-3, C-15 and C-20. Similar transformations of 252 and 253 lead to ( )-dihydrocorynantheol and ( )-hirsutinol (238), respectively, from which the latter is identical with ( )-3-epidihydrocorynantheol (149-151.). [Pg.187]

Scheme 6.104 Key intermediates of the proposed catalytic cycle for the 100-catalyzed Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes Formation of imine (A) and F-enamine (B), double hydrogen-bonding activation of the nitroalkene and nucleophilic enamine attack (C), zwitterionic structure (D), product-forming proton transfer, and hydrolysis. Scheme 6.104 Key intermediates of the proposed catalytic cycle for the 100-catalyzed Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes Formation of imine (A) and F-enamine (B), double hydrogen-bonding activation of the nitroalkene and nucleophilic enamine attack (C), zwitterionic structure (D), product-forming proton transfer, and hydrolysis.

See other pages where Hydrogenation, catalytic enamines is mentioned: [Pg.792]    [Pg.269]    [Pg.1060]    [Pg.21]    [Pg.139]    [Pg.98]    [Pg.50]    [Pg.674]    [Pg.674]    [Pg.142]    [Pg.352]    [Pg.352]    [Pg.153]    [Pg.29]    [Pg.223]    [Pg.76]    [Pg.141]    [Pg.222]    [Pg.50]    [Pg.228]    [Pg.518]    [Pg.201]    [Pg.18]    [Pg.25]    [Pg.5]    [Pg.40]    [Pg.48]    [Pg.450]    [Pg.647]    [Pg.149]    [Pg.272]    [Pg.273]    [Pg.275]    [Pg.277]    [Pg.15]    [Pg.73]    [Pg.247]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



Enamines hydrogenation

© 2024 chempedia.info