Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity acids

The intramolecular cyclization of enolate of l-tryptophyl-3-((3-ketobutyl) pyridinium bromide (160) afforded enamine 161, which undergoes stereoselective acid cyclization with cone. HCl to give the pentacyclic ketone 162 (Catalytic hydrogenation of 162 led to (d,l)-pseudoyohimbone (163) (76JA3645). Again, H3-H15 were found to have the tmns configuration in 162. [Pg.301]

Moore, H. W., H. R. Sheldon, D. W. Deters, and R. J. Wikholm Rearrangements of Azidoquinones V. Stereoselective Acid-Catalyzed Rearrangements of Azidoquinones to yCyanoalkylidine-(Cyanoarylidine)A P-butenolides. J. Amer. Chem. Soc. 92, 1675 (1970). [Pg.196]

The allylic alcohol (209) has been found to undergo stereoselective acid-catalysed cyclization to give a mixture of the hydrindene (21()) and the decalene... [Pg.304]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

The early Escherunoser-Stork results indicated, that stereoselective cyclizations may be achieved, if monocyclic olefins with 1,5-polyene side chains are used as substrates in acid treatment. This assumption has now been justified by many syntheses of polycyclic systems. A typical example synthesis is given with the last reaction. The cyclization of a trideca-3,7-dien-11-ynyl cyclopentenol leads in 70% yield to a 17-acetyl A-norsteroid with correct stereochemistry at all ring junctions. Ozonolysis of ring A and aldol condensation gave dl-progesterone (M.B. Gravestock, 1978 see p. 279f.). [Pg.91]

Asymmetric hydrogenation has been achieved with dissolved Wilkinson type catalysts (A. J. Birch, 1976 D. Valentine, Jr., 1978 H.B. Kagan, 1978). The (R)- and (S)-[l,l -binaph-thalene]-2,2 -diylblsCdiphenylphosphine] (= binap ) complexes of ruthenium (A. Miyashita, 1980) and rhodium (A. Miyashita, 1984 R. Noyori, 1987) have been prepared as pure atrop-isomers and used for the stereoselective Noyori hydrogenation of a-(acylamino) acrylic acids and, more significantly, -keto carboxylic esters. In the latter reaction enantiomeric excesses of more than 99% are often achieved (see also M. Nakatsuka, 1990, p. 5586). [Pg.102]

Several structures of the transition state have been proposed (I. D. Williams, 1984 K. A. Jorgensen, 1987 E.J. Corey, 1990 C S. Takano, 1991). They are compatible with most data, such as the observed stereoselectivity, NMR measuiements (M.O. Finn, 1983), and X-ray structures of titanium complexes with tartaric acid derivatives (I.D. Williams, 1984). The models, e. g., Jorgensen s and Corey s, are, however, not compatible with each other. One may predict that there is no single dominant Sharpless transition state (as has been found in the similar case of the Wittig reaction see p. 29f.). [Pg.124]

Stereoselective cis-dihydroxylation of the more hindered side of cycloalkenes is achieved with silver(I) or copper(II) acetates and iodine in wet acetic acid (Woodward gly-colization J.B. Siddall, 1966 L. Mangoni, 1973 R. Criegee, 1979) or with thallium(III) acetate via organothallium intermediates (E. Glotter, 1976). In these reactions the intermediate dioxolenium cation is supposed to be opened hydrolytically, not by Sn2 reaction. [Pg.128]

Another example is a chiral olefinic alcohol, which is disconnected at the double bond by a refro-Wittig transform. In the resulting 4-hydroxypentanal we recognize again glutamic acid, if methods are available to convert regio- and stereoselectively... [Pg.202]

Cyclopentene derivatives with carboxylic acid side-chains can be stereoselectively hydroxy-lated by the iodolactonization procedure (E.J. Corey, 1969, 1970). To the trisubstituted cyclopentene described on p. 210 a large iodine cation is added stereoselectively to the less hindered -side of the 9,10 double bond. Lactone formation occurs on the intermediate iod-onium ion specifically at C-9ot. Later the iodine is reductively removed with tri-n-butyltin hydride. The cyclopentane ring now bears all oxygen and carbon substituents in the right stereochemistry, and the carbon chains can be built starting from the C-8 and C-12 substit""" ... [Pg.275]

Diacetoxylation of various conjugated dienes including cyclic dienes has been extensively studied. 1,3-Cyclohexadiene was converted into a mixture of isomeric l,4-diacetoxy-2-cyclohexenes of unknown stereochemistry[303]. The stereoselective Pd-catalyzed 1,4-diacetoxylation of dienes is carried out in AcOH in the presence of LiOAc and /or LiCI and beiizoquinone[304.305]. In the presence of acetate ion and in the absence of chloride ion, /rau.v-diacetox-ylation occurs, whereas addition of a catalytic amount of LiCl changes the stereochemistry to cis addition. The coordination of a chloride ion to Pd makes the cis migration of the acetate from Pd impossible. From 1,3-cyclohexadiene, trans- and ci j-l,4-diacetoxy-2-cyclohexenes (346 and 347) can be prepared stereoselectively. For the 6-substituted 1,3-cycloheptadiene 348, a high diaster-eoselectivity is observed. The stereoselective cij-diacetoxylation of 5-carbo-methoxy-1,3-cyclohexadiene (349) has been applied to the synthesis of dl-shikimic acid (350). [Pg.68]

Addition of a hydroxy group to alkynes to form enol ethers is possible with Pd(II). Enol ether formation and its hydrolysis mean the hydration of alkynes to ketones. The 5-hydroxyalkyne 249 was converted into the cyclic enol ether 250[124], Stereoselective enol ether formation was applied to the synthesis of prostacyclin[131]. Treatment of the 4-alkynol 251 with a stoichiometric amount of PdCl2, followed by hydrogenolysis with formic acid, gives the cyclic enol ether 253. Alkoxypalladation to give 252 is trans addition, because the Z E ratio of the alkene 253 was 33 1. [Pg.500]

The biological dehydrogenation of succinic acid described in Section 5 8 is 100% stereoselective Only fumaric acid which has a trans double bond is formed High levels of stereoselectivity are characteristic of enzyme catalyzed reactions... [Pg.206]

Enzyme catalyzed reductions of carbonyl groups are more often than not com pletely stereoselective Pyruvic acid for example is converted exclusively to (5) (+) lactic acid by the lactate dehydrogenase NADH system (Section 15 11) The enantiomer... [Pg.735]

Stereoselective All lations. Ben2ene is stereoselectively alkylated with chiral 4-valerolactone in the presence of aluminum chloride with 50% net inversion of configuration (32). The stereoselectivity is explained by the coordination of the Lewis acid with the carbonyl oxygen of the lactone, resulting in the typ displacement at the C—O bond. Partial racemi2ation of the substrate (incomplete inversion of configuration) results by internal... [Pg.553]

Synthetic utility of stereoselective alkylations in natural product chemistry is exemplified by the preparation of optically active 2-arylglycine esters (38). Chirally specific a-amino acids with methoxyaryl groups attached to the a-carbon were prepared by reaction of the dimethyl ether of a chiral bis-lactam derivative with methoxy arenes. Using SnCl as the Lewis acid, enantioselectivities ranging from 65 to 95% were obtained. [Pg.553]

In view of the ready availabiUty of optically pure lactic acid derivatives this reaction offers an attractive general method for the preparation of optically pure aromatic ester derivatives (41). Stereoselective alkylation (15—60% inversion) of ben2ene with optically active 1,2- 1,3- and 1,5-dihaloalkanes was also reported (42). [Pg.554]

Stereoselective Acylations. Intramolecular Ftiedel-Crafts acylation reaction of A/-ataLkyl a-amino acid detivatives gives cycHc ketones with high enantioselectivity (100). This methodology has been used for the enantiospeciftc syntheses of tylophorine [482-20-2] and cryptopleutine [87302-53-2] the ptincipal representatives of phenanthroiadolizidine and phenanthroquiaolizidine alkaloids (qv) (101). [Pg.558]


See other pages where Stereoselectivity acids is mentioned: [Pg.100]    [Pg.100]    [Pg.624]    [Pg.58]    [Pg.140]    [Pg.90]    [Pg.79]    [Pg.100]    [Pg.100]    [Pg.624]    [Pg.58]    [Pg.140]    [Pg.90]    [Pg.79]    [Pg.45]    [Pg.65]    [Pg.118]    [Pg.130]    [Pg.202]    [Pg.208]    [Pg.211]    [Pg.278]    [Pg.282]    [Pg.314]    [Pg.318]    [Pg.319]    [Pg.320]    [Pg.324]    [Pg.325]    [Pg.326]    [Pg.62]    [Pg.299]    [Pg.370]    [Pg.395]    [Pg.252]   
See also in sourсe #XX -- [ Pg.264 ]

See also in sourсe #XX -- [ Pg.27 , Pg.264 ]




SEARCH



4-Pentenoic acid, 2,4-dimethyl-3-hydroxycyclofunctionalization stereoselectivity

4-Pentenoic acid, 2-aminoiodolactonization stereoselectivity

5- Hexenoic acid, 3-methyliodolactonization stereoselectivity

5-Hexenoic acid, 3-hydroxyselenolactonization stereoselectivity

Acrylic acid stereoselectivity

Amino acids hydrolysis, stereoselectivity

Amino acids stereoselective

Amino acids stereoselectivity

Boronic acid, crotylchiral stereoselective reactions with aldehydes

Glycolic acid stereoselectivity

Lewis acid catalyzed Diels—Alder reaction stereoselectivity

Lewis acids, effect stereoselectivity in radical

Propionic acid, a-bromoethyl ester Reformatsky reaction, stereoselectivity

Regio- and a-Stereoselective Sialyl Glycoside Syntheses Using Thioglycosides of Sialic Acids in Acetonitrile

Stereoselective Esterifications of Racemic Carboxylic Acids

Stereoselective Syntheses via Esters of Arsinous and Arsinthious Acids

Stereoselective acid reagents

Stereoselective reactions fumaric acid

Stereoselective reactions trifluoromethanesulfonic acid

Stereoselectivity amino acid ester hydrolysis

Stereoselectivity in Other Amino Acid Catalyzed Reactions

Stereoselectivity, malonic acid

Stereoselectivity, malonic acid aldehydes

© 2024 chempedia.info