Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation alkyl bromides

Reaction of alcohols with phosphorus tribromide (Section 4 13) As an alternative to converting alco hols to alkyl bromides with hydrogen bromide the inorganic reagent phosphorus tribromide is some times used... [Pg.180]

Select the compound in each of the following pairs that will be converted to the corre spending alkyl bromide more rapidly on being treated with hydrogen bromide Explain the reason for your choice... [Pg.185]

A secondary alkyl radical is more stable than a primary radical Bromine therefore adds to C 1 of 1 butene faster than it adds to C 2 Once the bromine atom has added to the double bond the regioselectivity of addition is set The alkyl radical then abstracts a hydrogen atom from hydrogen bromide to give the alkyl bromide product as shown m... [Pg.243]

Compound A (C7Hi5Br) is not a primary alkyl bromide It yields a single alkene (compound B) on being heated with sodium ethoxide in ethanol Hydrogenation of compound B yields 2 4 dimethylpentane Identify compounds A and B... [Pg.278]

Linear alpha-olefins are the source of the largest volume of ahphatic amine oxides. The olefin reacts with hydrogen bromide in the presence of peroxide catalyst, to yield primary alkyl bromide, which then reacts with dimethylamine to yield the corresponding alkyl dimethyl amine. Fatty alcohols and fatty acids are also used to produce amine oxides (Fig. 1). [Pg.191]

A considerable amount of hydrobromic acid is consumed in the manufacture of inorganic bromides, as well as in the synthesis of alkyl bromides from alcohols. The acid can also be used to hydrobrominate olefins (qv). The addition can take place by an ionic mechanism, usually in a polar solvent, according to Markownikoff s rule to yield a secondary alkyl bromide. Under the influence of a free-radical catalyst, in aprotic, nonpolar solvents, dry hydrogen bromide reacts with an a-olefin to produce a primary alkyl bromide as the predominant product. Primary alkyl bromides are useful in synthesizing other compounds and are 40—60 times as reactive as the corresponding chlorides (6). [Pg.291]

A teehnique that is a convenient source of radieals for study by EPR involves photolysis of a mixture of di-t-butyl peroxide, triethylsilane, and the alkyl bromide corresponding to the radieal to be studied. Photolysis of the peroxide gives t-butoxy radieals, whieh selectively abstract hydrogen from the silane. This reactive silicon radieal in turn abstracts bromine, generating the alkyl radieal at a steady-state eoncentration suitable for EPR study. [Pg.674]

One possible interpretation is a change to a free radical chain mechanism. Bromine radical is first produced which then adds to the alkene. The resulting free radical reacts with hydrogen bromide to yield the final alkyl bromide and regenerate bromine radical. [Pg.241]

The alkyl iodides formed in the reaction are used to characterize the alkyl chain by GC. An alternative method is the cleavage with hydrogen bromide and GC of the alkyl bromides. A detailed discussion of the analytical techniques applicable to the analysis of the ethylene and propylene oxide content as well as the alkyl chain distribution has been made by Cross [311]. [Pg.286]

Six members of this series could be isolated in modest yields as highly air-sensitive, dark blue or dark purple crystalline solids for which analytical, spectroscopic, and single-crystal X-ray analyses were fully consistent with the side-on-biidged N2 structures shown in Scheme 102. These complexes show unusual structural features as well as a unique reactivity. An extreme degree of N = N bond elongation was manifested in rf(N-N) values of up to 1.64 A, and low barriers for N-atom functionalization allowed functionalization such as hydrogenation, hydrosilylation, and, for the first time, alkylation with alkyl bromides at ambient temperature. ... [Pg.259]

Notes on the preparation of secondary alkylarylamines. The preparation of -propyl-, ijopropyl- and -butyl-anilines can be conveniently carried out by heating the alkyl bromide with an excess (2-5-4mols) of aniline for 6-12 hours. The tendency for the alkyl halide to yield the corresponding tertiary amine is thus repressed and the product consists almost entirely of the secondary amine and the excess of primary amine combined with the hydrogen bromide liberated in the reaction. The separation of the primary and secondary amines is easily accomplished by the addition of an excess of per cent, zinc chloride solution aniline and its homologues form sparingly soluble additive compounds of the type B ZnCl whereas the alkylanilines do not react with sine chloride in the presence of water. The excess of primary amine can be readily recovered by decomposing the zincichloride with sodium hydroxide solution followed by steam distillation or solvent extraction. The yield of secondary amine is about 70 per cent, of the theoretical. [Pg.571]

A combination of cat. Ybt and A1 is effective for the photo-induced catalytic hydrogenative debromination of alkyl bromide (Scheme 28) [69]. The ytterbium catalyst forms a reversible redox cycle in the presence of Al. In both vanadium- and ytterbium-catalyzed reactions, the multi-component redox systems are achieved by an appropriate combination of a catalyst and a co-reductant as described in the pinacol coupling, which is mostly dependent on their redox potentials. [Pg.81]

Since hydrogen peroxide, like alkyl hydroperoxides, can be alkylated by alkyl bromide plus silver trifluoroacetate (Eq. 19, R = H),35) an attractive variation of the silver-salt-induced dioxabicyclization uses cis- 1,3-dibromocycloalkane 43 as starting material. Thus Porter and Gilmore obtained 2,3-dioxabicyclo[2.2.1]heptane 9 in 30-40% yield from c s-l,3-dibromocyclopentane, which was itself obtained from the corresponding c/s-diol by reaction with triphenylphosphine dibromide (Eq. 31 R = R = H)36). [Pg.142]

Hydrogen atom transfer implies the transfer of hydrogen atoms from the chain carrier, which is the stereo-determining step in enantioselective hydrogen atom transfer reactions. These reactions are often employed as a functional group interconversion step in the synthesis of many natural products wherein an alkyl iodide or alkyl bromide is converted into an alkane, which, in simple terms, is defined as reduction [ 19,20 ]. Most of these reactions can be classified as diastereoselective in that the selectivity arises from the substrate. Enantioselective H-atom transfer reactions can be performed in two distinct ways (1) by H-atom transfer from an achiral reductant to a radical complexed to a chiral source or alternatively (2) by H-atom transfer from a chiral reductant to a radical. [Pg.119]

These compounds can be prepared by the action of bromine on a trialkyl phosphite,2 but a more satisfactory method recently worked out by Goldwhite and Saunders3 consists in treating the dialkyl hydrogen phosphite with iV-bromosuccinimide. In this way dimethyl, diethyl w-propyl and isopropyl phosphoro-bromidates have been obtained as pure liquids by distillation at very low temperature. When kept at ordinary temperatures, they gradually decompose with the evolution of the corresponding alkyl bromide. [Pg.121]

Cyclohexyl xanthate has been used as a model compound for mechanistic studies [43]. From laser flash photolysis experiments the absolute rate constant of the reaction with (TMS)3Si has been measured (see Table 4.3). From a competition experiment between cyclohexyl xanthate and -octyl bromide, xanthate was ca 2 times more reactive than the primary alkyl bromide instead of ca 50 as expected from the rate constants reported in Tables 4.1 and 4.3. This result suggests that the addition of silyl radical to thiocarbonyl moiety is reversible. The mechanism of xanthate reduction is depicted in Scheme 4.3 (TMS)3Si radicals, initially generated by small amounts of AIBN, attack the thiocarbonyl moiety to form in a reversible manner a radical intermediate that undergoes (3-scission to form alkyl radicals. Hydrogen abstraction from the silane gives the alkane and (TMS)3Si radical, thus completing the cycle of this chain reaction. [Pg.65]

Alkyl bromides and especially alkyl iodides are reduced faster than chlorides. Catalytic hydrogenation was accomplished in good yields using Raney nickel in the presence of potassium hydroxide [63] Procedure 5, p. 205). More frequently, bromides and iodides are reduced by hydrides [505] and complex hydrides in good to excellent yields [501, 504]. Most powerful are lithium triethylborohydride and lithium aluminum hydride [506]. Sodium borohydride reacts much more slowly. Since the complex hydrides are believed to react by an S 2 mechanism [505, 511], it is not surprising that secondary bromides and iodides react more slowly than the primary ones [506]. The reagent prepared from trimethoxylithium aluminum deuteride and cuprous iodide... [Pg.63]

Kelly and coworkers devised a two binding-site host that accelerates an Sn2 reaction between a primary aliphatic amine and an alkyl bromide [17[. Kelly s host (Figure 1.7) acted as template for the two reactants that were able to form three hydrogen bonds to each aminopyridone from the host. The reactants were the aminomethyl- and bromomethylnaphthyridines indicated in Figure 1.7, which bound strongly (K>1O M ) to the aminopyridone moieties from the host. A sixfold acceleration of the Sn2 reaction was observed, but turnover could not be demonstrated (the product precipitated from the CHCI3 solution as the HBr salt). [Pg.8]


See other pages where Hydrogenation alkyl bromides is mentioned: [Pg.173]    [Pg.571]    [Pg.245]    [Pg.336]    [Pg.675]    [Pg.298]    [Pg.176]    [Pg.245]    [Pg.336]    [Pg.675]    [Pg.172]    [Pg.492]    [Pg.518]    [Pg.1319]    [Pg.677]    [Pg.346]    [Pg.226]    [Pg.161]    [Pg.105]    [Pg.84]    [Pg.537]    [Pg.137]    [Pg.310]    [Pg.362]    [Pg.338]    [Pg.7]    [Pg.14]    [Pg.21]    [Pg.310]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Alkyl bromide alkylation

Alkyl bromides

Alkylation bromide

Bromides hydrogenation

Cellobiosides, alkyl and aryl poly-0acetyl-«- , reaction with hydrogen bromide heptaacetate

Hydrogen bromid

Hydrogen bromide

Hydrogen bromide reaction with alkyl alcohols

© 2024 chempedia.info