Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen of caprolactam

Figure 17.17. Examples of reactors for specific liquid-gas processes, (a) Trickle reactor for synthesis of butinediol 1.5 m dia by 18 m high, (b) Nitrogen oxide absorption in packed columns, (c) Continuous hydrogenation of fats, (d) Stirred tank reactor for batch hydrogenation of fats, (e) Nitrogen oxide absorption in a plate column, (f) A thin film reactor for making dodecylbenzene sulfonate with S03. (g) Stirred tank reactor for the hydrogenation of caprolactam, (h) Tubular reactor for making adiponitrile from adipic acid in the presence of phosphoric acid. Figure 17.17. Examples of reactors for specific liquid-gas processes, (a) Trickle reactor for synthesis of butinediol 1.5 m dia by 18 m high, (b) Nitrogen oxide absorption in packed columns, (c) Continuous hydrogenation of fats, (d) Stirred tank reactor for batch hydrogenation of fats, (e) Nitrogen oxide absorption in a plate column, (f) A thin film reactor for making dodecylbenzene sulfonate with S03. (g) Stirred tank reactor for the hydrogenation of caprolactam, (h) Tubular reactor for making adiponitrile from adipic acid in the presence of phosphoric acid.
Caprolactam. At the same time that Dow was constmcting toluene to phenol plants, Snia Viscosa (28—30) introduced two processes for the manufacture of caprolactam (qv) from benzoic acid. The earlier process produced ammonium sulfate as a by-product, but the latter process did not. In either process benzoic acid is hydrogenated to cyclohexanecarboxyHc acid [98-89-5] which then reacts with nitrosylsulfuric acid to form caprolactam [105-60-2]. [Pg.55]

Caprolactam [105-60-2] (2-oxohexamethyleiiiiriiQe, liexaliydro-2J -a2epin-2-one) is one of the most widely used chemical intermediates. However, almost all of the aimual production of 3.0 x 10 t is consumed as the monomer for nylon-6 fibers and plastics (see Fibers survey Polyamides, plastics). Cyclohexanone, which is the most common organic precursor of caprolactam, is made from benzene by either phenol hydrogenation or cyclohexane oxidation (see Cyclohexanoland cyclohexanone). Reaction with ammonia-derived hydroxjlamine forms cyclohexanone oxime, which undergoes molecular rearrangement to the seven-membered ring S-caprolactam. [Pg.426]

AH commercial processes for the manufacture of caprolactam ate based on either toluene or benzene, each of which occurs in refinery BTX-extract streams (see BTX processing). Alkylation of benzene with propylene yields cumene (qv), which is a source of phenol and acetone ca 10% of U.S. phenol is converted to caprolactam. Purified benzene can be hydrogenated over platinum catalyst to cyclohexane nearly aH of the latter is used in the manufacture of nylon-6 and nylon-6,6 chemical intermediates. A block diagram of the five main process routes to caprolactam from basic taw materials, eg, hydrogen (which is usuaHy prepared from natural gas) and sulfur, is given in Eigute 2. [Pg.428]

Hydroxylamine sulfate is produced by direct hydrogen reduction of nitric oxide over platinum catalyst in the presence of sulfuric acid. Only 0.9 kg ammonium sulfate is produced per kilogram of caprolactam, but at the expense of hydrogen consumption (11). A concentrated nitric oxide stream is obtained by catalytic oxidation of ammonia with oxygen. Steam is used as a diluent in order to avoid operating within the explosive limits for the system. The oxidation is followed by condensation of the steam. The net reaction is... [Pg.429]

Snia Viscosa. Catalytic air oxidation of toluene gives benzoic acid (qv) in ca 90% yield. The benzoic acid is hydrogenated over a palladium catalyst to cyclohexanecarboxyhc acid [98-89-5]. This is converted directiy to cmde caprolactam by nitrosation with nitrosylsulfuric acid, which is produced by conventional absorption of NO in oleum. Normally, the reaction mass is neutralized with ammonia to form 4 kg ammonium sulfate per kilogram of caprolactam (16). In a no-sulfate version of the process, the reaction mass is diluted with water and is extracted with an alkylphenol solvent. The aqueous phase is decomposed by thermal means for recovery of sulfur dioxide, which is recycled (17). The basic process chemistry is as follows ... [Pg.430]

At least rune manufacturing technologies are available for the production of caprolactam and, in most, hydroxylamine (hyam) is one of the important raw materials. In particular, in the HPO process the hydroxylamine is made by using a precious metal powdered catalyst to selectively hydrogenate nitric acid. Evonik... [Pg.93]

Figure 3 Hydrogenation of recycled Nylon-6 and Nylon-6,6 ammonolysis feed in the presence of 5 g of Raney Co 2724 catalyst at a total pressure of 500 psig, and temperature of 85 to 90°C, at a feed flowrate of 12 ml/h. Hexamethylenediamine ( ), caprolactam (A), adiponitrile ( ), 6-... Figure 3 Hydrogenation of recycled Nylon-6 and Nylon-6,6 ammonolysis feed in the presence of 5 g of Raney Co 2724 catalyst at a total pressure of 500 psig, and temperature of 85 to 90°C, at a feed flowrate of 12 ml/h. Hexamethylenediamine ( ), caprolactam (A), adiponitrile ( ), 6-...
A small amount of adipic acid, 2%, is made by hydrogenation of phenol with a palladium or nickel catalyst (150°C, 50 psi) to the mixed oil, then nitric acid oxidation to adipic acid. If palladium is used, more cyclohexanone is formed. Although the phenol route for making adipic acid is not economically advantageous because phenol is more expensive than benzene, the phenol conversion to greater cyclohexanone percentages can be used successfully for caprolactam manufacture (see next section), where cyclohexanone is necessary. [Pg.191]

Pyrrolidone is a lactone used for the production of nylon-4. This reactant may be produced by the reduction ammoniation of maleic anhydride. s-Caprolactam, used in the production of nylon-6, may be produced by the Beckman rearrangement of cyclohexanone oxime (structure 17.11). The oxime may be produced by the catalytic hydrogenation of nitrobenzene, the photolytic nitrosylation of cyclohexane (structure 17.9), or the reaction of cyclohexanone and hydroxylamine (structure 17.10). Nearly one-half of the production of caprolactam is derived from phenol. [Pg.532]

Catalytic synthesis of hydroxylamine from nitrogen oxide and hydrogen is widely used in industry as a constituent part of caprolactam production. The reaction is conducted in aqueous sulfuric acid solution saturated with NO and H2 at 40°C and a pressure of approximately 1 atm. Platinum supported on porous graphite, in the form of fine particles suspended in the intensely stirred solution, is used as a catalyst. The main direction of the reaction is... [Pg.239]

About 90% of the caprolactam is produced by the conventional cyclohexanone process. Cyclohexanone is obtained by catalytic oxidation of cyclohexane with air, or by hydrogenation of phenol and dehydrogenation of the cyclohexanol byproduct. The conversion of cyclohexanone to cyclohexanone oxime followed by Beckmann rearrangement gives caprolactam. About 10% of caprolactam is produced by photonitrosation of cyclohexane or by nitrosation of cyclohexanecarboxylic acid in the presence of sulfuric acid264. [Pg.375]

Cyclohexane. Cyclohexane is the basic starting material for nylon fibers and resins via the intermediates adipic acid, caprolactam, and hexamethylenediamine. The world consumption was about 10 billion lb (with 3.5 billion lb in the United States) in 2000. Of these three derivatives, adipic acid and caprolactam account for over 90 percent of cyclohexane consumption. Cyclohexane is also used as a solvent and as a starting material for cyclohexanol and cyclohexanone. Although cyclohexane can be recovered from natural gasoline, most is made by liquid or vapor-phase hydrogenation of benzene. A nickel or platinum catalyst is generally used at elevated temperature and pressure. [Pg.394]

Several processes are used for the industrial production of caprolactam. Generally cyclohexanone is the key intermediate and it is produced by catalytic hydrogenation of phenol (ex benzene or toluene) or the catalytic autoxidation of cyclohexane (from benzene hydrogenation) as shown in Fig. 2.27. [Pg.62]


See other pages where Hydrogen of caprolactam is mentioned: [Pg.2106]    [Pg.45]    [Pg.1863]    [Pg.2135]    [Pg.2121]    [Pg.2110]    [Pg.6668]    [Pg.2106]    [Pg.45]    [Pg.1863]    [Pg.2135]    [Pg.2121]    [Pg.2110]    [Pg.6668]    [Pg.242]    [Pg.298]    [Pg.114]    [Pg.263]    [Pg.539]    [Pg.540]    [Pg.97]    [Pg.104]    [Pg.196]    [Pg.48]    [Pg.605]    [Pg.18]    [Pg.585]    [Pg.261]    [Pg.481]    [Pg.265]    [Pg.323]    [Pg.420]    [Pg.188]    [Pg.5]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Caprolactam

Caprolactamate

Caprolactams

© 2024 chempedia.info