Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen donor reactions

Hydrogen donor Reaction tempera- ture °C Products of P-nitrostyrene reduction mol % Products of 3-nitrobenzaldehyde reduction mol ... [Pg.173]

More recently Mika and Tanaka (12) suggested a mechanism based on the hydrogen bonding of amine to a hydrogen donor, reactions (2a), (2b) and (2c). ... [Pg.227]

Isopropyl methyl ketone was successfully reduced on bulk magnesia to 3-methyl-2-butanoi using isopropyl alcohol as hydrogen donor. Reaction proceeded according to the equation ... [Pg.633]

This investigation represents an attempt to assess the importance of nonthermal F-to-HF reactions in MNR experiments wdth reactive hydrogen donors. Reaction 4 and its thermal counterpart. Reaction 5, are... [Pg.208]

Oxidoreduciases. Enzymes catalysing redox reactions. The substrate which is oxidized is regarded as the hydrogen donor. This group includes the trivially named enzymes, dehydrogenases, oxidases, reductases, peroxidases, hydrogenases and hydroxylases. [Pg.159]

Frcc-Radical Reactions. Eree-radical reactions of maleic anhydride are important in polymeri2ations and monomer synthesis. Nucleophilic radicals such as the one from cyclohexane [110-82-7] serve as hydrogen donors that add to maleic anhydride at the double bond to form cyclohexylsuccinic anhydride [5962-96-9] (20) (63). [Pg.451]

Biosynthesis of coen2yme A (CoA) ia mammalian cells incorporates pantothenic acid. Coen2yme A, an acyl group carrier, is a cofactor for various en2ymatic reactions and serves as either a hydrogen donor or an acceptor. Pantothenic acid is also a stmctural component of acyl carrier protein (AGP). AGP is an essential component of the fatty acid synthetase complex, and is therefore requited for fatty acid synthesis. Free pantothenic acid is isolated from hver, and is a pale yeUow, viscous, and hygroscopic oil. [Pg.56]

Magnitudes of /cg, /cp, /c, and indicate the importance of direct reactions with coal, where and are for hydrocracking reactions in the conversion process. Data for and from the experiments with HPO indicate that oil production from coal is increased by the use of a good hydrogen donor solvent. [Pg.2373]

Nevertheless, many free-radical processes respond to introduction of polar substituents, just as do heterolytic processes that involve polar or ionic intermediates. The substituent effects on toluene bromination, for example, are correlated by the Hammett equation, which gives a p value of — 1.4, indicating that the benzene ring acts as an electron donor in the transition state. Other radicals, for example the t-butyl radical, show a positive p for hydrogen abstraction reactions involving toluene. ... [Pg.700]

One of the most common reactions of photoexcited carbonyl groups is hydrogen-atom abstraction from solvent or some other hydrogen donor. A second common reaction is cleavage of the carbon-carbon bond adjacent to the carbonyl group ... [Pg.754]

In the reaction of naphthenes with olefins, naphthenic compounds are hydrogen donors. They can react with olefins to produce paraffins and aromatics (Equation 4-12). [Pg.134]

Usually metal-free phthalocyanine (PcH2) can be prepared from phthalonitrile with or without a solvent. Hydrogen-donor solvents such as pentan-l-ol and 2-(dimethylamino)ethanol are most often used for the preparation.113,127 128 To increase the yield of the product, some basic catalyst can be added (e.g., DBU, anhyd NH3). When lithium or sodium alkoxides are used as a base the reaction leads to the respective alkali-metal phthalocyanine, which can easily be converted into the free base by treatment with acid and water.129 The solvent-free preparation is carried out in a melt of the phthalonitrile and the reductive agent hydroquinone at ca. 200 C.130 Besides these and various other conventional chemical synthetic methods, PcH2 can also be prepared electrochemically.79... [Pg.727]

The reaction between the photoexcited carbonyl compound and an amine occurs with substantially greater facility than that with most other hydrogen donors. The rate constants for triplet quenching by amines show little dependence on the amine a-C-H bond strength. However, the ability of the amine to release an electron is important.- - This is in keeping with a mechanism of radical generation which involves initial electron (or charge) transfer from the amine to the photoexcited carbonyl compound. Loss of a proton from the resultant complex (exciplex) results in an a-aminoalkyl radical which initiates polymerization. The... [Pg.102]

A fast, unimolecular reaction can be used to excellent advantage. The rm-butoxyl radical offers the advantage that /3-scission occurs with a known rate constant. For Eq. (5-31), ki = 1.4 X 106 s-1 in water.8 In the presence of a hydrogen donor, AH, the competition is... [Pg.108]

The product distribution derived from the disproportionation of sulfonyl radicals is expected to be dependent on the conditions under which the reaction is being carried out thus, in hydrogen donor solvents, the formation of ArS020H should be important while at higher temperatures the formation of an aryl radical, namely... [Pg.1101]

Aldehydes, both aliphatic and aromatic, can be decarbonylated by heating with chlorotris(triphenylphosphine)rhodium or other catalysts such as palladium. The compound RhCl(Ph3P)3 is often called Wilkinson s catalyst.In an older reaction, aliphatic (but not aromatic) aldehydes are decarbonylated by heating with di-tert-peroxide or other peroxides, usually in a solution containing a hydrogen donor, such as a thiol. The reaction has also been initiated with light, and thermally (without an initiator) by heating at 500°C. [Pg.944]

The dimerization of ketones to 1,2-diols can also be accomplished photochemi-cally indeed, this is one of the most common photochemical reactions. The substrate, which is usually a diaryl or aryl alkyl ketone (though a few aromatic aldehydes and dialkyl ketones have been dimerized), is irradiated with UV light in the presence of a hydrogen donor such as isopropyl alcohol, toluene, or an amine. In the case of benzophenone, irradiated in the presence of 2-propanol, the ketone molecule initially undergoes n — k excitation, and the singlet species thus formed crosses to the T, state with a very high efficiency. [Pg.1560]

The hydrogen transfer reaction (HTR), a chemical redox process in which a substrate is reduced by an hydrogen donor, is generally catalysed by an organometallic complex [72]. Isopropanol is often used for this purpose since it can also act as the reaction solvent. Moreover the oxidation product, acetone, is easily removed from the reaction media (Scheme 14). The use of chiral ligands in the catalyst complex affords enantioselective ketone reductions [73, 74]. [Pg.242]

The catalytic alcohol racemization with diruthenium catalyst 1 is based on the reversible transfer hydrogenation mechanism. Meanwhile, the problem of ketone formation in the DKR of secondary alcohols with 1 was identified due to the liberation of molecular hydrogen. Then, we envisioned a novel asymmetric reductive acetylation of ketones to circumvent the problem of ketone formation (Scheme 6). A key factor of this process was the selection of hydrogen donors compatible with the DKR conditions. 2,6-Dimethyl-4-heptanol, which cannot be acylated by lipases, was chosen as a proper hydrogen donor. Asymmetric reductive acetylation of ketones was also possible under 1 atm hydrogen in ethyl acetate, which acted as acyl donor and solvent. Ethanol formation from ethyl acetate did not cause critical problem, and various ketones were successfully transformed into the corresponding chiral acetates (Table 17). However, reaction time (96 h) was unsatisfactory. [Pg.73]

The concept at the heart of this reaction is the conversion of a hydrogen donor (alcohol) into a hydrogen acceptor (alkene) to close the catalytic cycle (Scheme 13.15). [Pg.311]

In the electron transfer theories discussed so far, the metal has been treated as a structureless donor or acceptor of electrons—its electronic structure has not been considered. Mathematically, this view is expressed in the wide band approximation, in which A is considered as independent of the electronic energy e. For the. sp-metals, which near the Fermi level have just a wide, stmctureless band composed of. s- and p-states, this approximation is justified. However, these metals are generally bad catalysts for example, the hydrogen oxidation reaction proceeds very slowly on all. sp-metals, but rapidly on transition metals such as platinum and palladium [Trasatti, 1977]. Therefore, a theory of electrocatalysis must abandon the wide band approximation, and take account of the details of the electronic structure of the metal near the Fermi level [Santos and Schmickler, 2007a, b, c Santos and Schmickler, 2006]. [Pg.45]


See other pages where Hydrogen donor reactions is mentioned: [Pg.627]    [Pg.301]    [Pg.627]    [Pg.301]    [Pg.915]    [Pg.482]    [Pg.483]    [Pg.43]    [Pg.214]    [Pg.295]    [Pg.533]    [Pg.106]    [Pg.148]    [Pg.105]    [Pg.125]    [Pg.137]    [Pg.213]    [Pg.1601]    [Pg.101]    [Pg.43]    [Pg.491]    [Pg.321]    [Pg.535]    [Pg.625]    [Pg.33]    [Pg.186]    [Pg.212]    [Pg.915]    [Pg.270]    [Pg.271]    [Pg.273]   
See also in sourсe #XX -- [ Pg.306 ]




SEARCH



Donor hydrogenation

Donor hydrogenation, reactions during

Donor reaction

Hydrogen donors catalytic reactions

Hydrogenation hydrogen donors

Hydrogenation reactions during donor solvent

Reduction Reactions Involving Hydrogen Atom Donors

© 2024 chempedia.info