Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen diradical

Intramolecular hydrogen-atom abstraction is also an important process for acyclic a,/ -unsaturated ketones. The intermediate diradical then cyclizes to give the enol of a cyclobutyl ketone. Among the by-products of such photolyses are cyclobutanols resulting from alternative modes of cyclization of the diradical intermediate ... [Pg.758]

The most efficient intramolecular secondary processes competing with the acyl-alkyl diradical recombination in five-membered and larger cyclic ketones are hydrogen shifts resulting in the disproportionation of the diradical to either ketenes or unsaturated aldehydes [cf. (5) (4) (6)]. [Pg.293]

Although these reactions are thus closely related to the acyl-alkyl diradical disproportionation to ketenes, the stereospecificity of (55) -> (56) and (57) -> (58) shows that these hydroxyketones cannot proceed through free radicals capable of rotating about single bonds prior to the intramolecular hydrogen... [Pg.303]

It has been proposed that oxygen adds to the excited keto group [- (112)]. The rearrangement of the resulting hydroxyhydroperoxy diradical (112) could then proceed by intramolecular hydrogen abstraction involving a six-membered cyclic transition state, followed by fission of the former C —CO bond to form the unsaturated peracid (113) as the precursor of the final product. Such a reaction sequence demands a hydrogen atom in the J -position sterically accessible to the intermediate hydroperoxy radical. [Pg.317]

Acetylenedimagnesium bromide, 66, 84, 137 Acyl-alkyl diradical disproportionations, 299 Acyl-alkyl diradical recombination, 296 Alkaline hydrogen peroxide, 10, 12, 20 Alkylation of formyl ketones, 93 Alkylation via enolate anions, 86 17a-Alkynyl steroids from 17-ketones, 67 2a-Al]yl-17jS-hydroxy-5a-androstan-3 -one, 9 5 Allylic acetoxylation, 242 Allylmagnesium bromide, 64 17 -Aminoandrost-5-en-3 -ol, 145 17 a-Aminomethy 1-5 a-androstane-3, 1718-diol, 387... [Pg.456]

Upon heating the enediyne la rearranges reversibly to the 1,4-benzenediyl diradical 2a, which in its turn can rearrange to the enediyne lb or—in the presence of a hydrogen donor (e.g. cyclohexa-1,4-diene)—react to the aromatic compound 3a. [Pg.39]

The overall reaction includes allylic transposition of a double bond, migration of the allylic hydrogen and formation of a bond between ene and enophile. Experimental findings suggest a concerted mechanism. Alternatively a diradical species 4 might be formed as intermediate however such a species should also give rise to formation of a cyclobutane derivative 5 as a side-product. If such a by-product is not observed, one might exclude the diradical pathway ... [Pg.104]

The fragmentation/cyclization ratio is determined by the relative orientation of the respective molecular orbitals, and thus by the conformation of diradical species 2. The quantum yield with respect to formation of the above products is generally low the photochemically initiated 1,5-hydrogen shift from the y-carbon to the carbonyl oxygen is a reversible process, and may as well proceed back to the starting material. This has been shown to be the case with optically active ketones 7, containing a chiral y-carbon center an optically active ketone 7 racemizes upon irradiation to a mixture of 7 and 9 ... [Pg.216]

Hydrogen shifts are often observed in thermal isomerizations of vinylaziridines. Heating of compounds 221 at 180 °C produced mixture of 3-pyrrolines 222 and hydrazones 223 (Scheme 2.54) [87]. The formation of 223 can be explained in terms either of a concerted hydrogen shift as depicted in 224 or of diradical intermediates 225, both of which would be followed by thermal isomerization of the (Z)-carbon-carbon double bonds to provide the ( ) isomers 223. [Pg.62]

The dominant pattern for the thermal fragmentation of thietane dioxides involves extrusion of sulfur dioxide leading to a 1,3-diradical (i.e. 242) which closes to final products, mainly cyclopropanes, accompanied by rearrangement products resulting from hydrogen migration within the diradical191,1930 230,256-258 (equation 92). [Pg.450]

This reaction, called Norrish Type II cleavage, involves intramolecular abstraction of the y hydrogen followed by cleavage of the resulting diradical (a... [Pg.318]

Oxygen itself (a diradical) is not reactive enough to be the species that actually abstracts the hydrogen. But if a trace of free radical (say R -) is produced by some... [Pg.920]

The overall pathway for the conversion of the unsaturated azido ether 281 to 2,5-dihydrooxazoles 282 involves first formation of the dipolar cycloaddition product 287, which thermolyzes to oxazoline 282 or is converted by silica gel to oxazolinoaziridine 288. While thermolysis or acid-catalyzed decomposition of triazolines to a mixture of imine and aziridine is well-documented [71,73], this chemoselective decomposition, depending on whether thermolysis or exposure to silica gel is used, is unprecedented. It is postulated that acidic surface sites on silica catalyze the triazoline decomposition via an intermediate resembling 289, which prefers to close to an aziridine 288. On the other hand, thermolysis of 287 may proceed via 290 (or the corresponding diradical) in which hydrogen migration is favored over ring closure. [Pg.42]

The photoadditions proceed through 1,4-diradical intermediates. Trapping experiments with hydrogen atom donors indicate that the initial bond formation can take place at either the a- or (3-carbon of the enone. The excited enone has its highest nucleophilic character at the (3-carbon. The initial bond formation occurs at the (3-carbon for electron-poor alkenes but at the a-carbon for electron-rich alkenes.191 Selectivity is low for alkenes without strong donor or acceptor substituents.192 The final product ratio also reflects the rate and efficiency of ring closure relative to fragmentation of the biradical.193... [Pg.547]

The second form of head-to-head dimerization involved the formation of a linear (as distinct from a cyclic) species in which two molecules of silene form a silicon-silicon bond. If this follows the pathway suggested above in Eq. (25), the resulting 1,4-diradical must then disproportionate by hydrogen abstraction, forming a molecule saturated at one end and unsaturated at the other. Recent examples are given in Eq. (27).86... [Pg.107]

In the presence of benzophenone, (8) was again the major product (>95°/0) and only trace amounts of the cyclohexane products were produced. These results suggest the intermediacy of a singlet 1,6-hexylene biradical in the direct photolysis and a longer lived triplet 1,6-diradical in the sensitized photolysis. In the triplet biradical more time is available for 1,6-hydrogen transfer to occur prior to spin inversion and hence more olefin (8) is produced. Similar results were reported for the direct and photosensitized photolysis of the 3,8-dimethyl derivative of (7). [Pg.252]

Excitation to produce a diradical-like intermediate (excited state) can result in either hydrogen abstraction or rearrangement and closure to form the cyclobutene ... [Pg.371]

The substitution of the exo-methylene hydrogen atoms of MCP with halogens seems to favor the [2 + 2] cycloaddition reaction by stabilizing the intermediate diradical. Indeed, chloromethylenecyclopropane (96) reacts with acrylonitrile (519) to give a diastereomeric mixture of spirohexanes in good yield (Table 41, entry 2) [27], but was unreactive towards styrene and ds-stilbene. Anyway, it reacted with dienes (2,3-dimethylbutadiene, cyclopentadiene, cyc-lohexadiene, furan) exclusively in a [4 + 2] fashion (see Sect. 2.1.1) [27], while its... [Pg.81]

In this chapter are summarized the photochemical reactions wherein the primary chemical event is inter- or intramolecular hydrogen transfer to the excited chromophor. In intermolecular reactions hydrogen abstraction usually implies reduction or hydrodimerization of the excited molecule intramolecular hydrogen abstraction is frequently followed by either ring closure of the diradical or fragmentation to afford unsaturated molecules. [Pg.44]

The process of intramolecular abstraction of an hydrogen atom from the y carbon atom by the excited carbonyl group is commonly referred to as Norrish type II reaction. The resulting diradical can close to a cyclo-... [Pg.44]

The effects of an uncompensated electron are (1) to split the molecule s spectral lines into doublets, or in the case of certain diradicals, into triplets, (2) to make the molecule paramagnetic, (3) to catalyze the conversion of para and ortho hydrogen molecules, and (4) to cause paramagnetic resonance absorption. [Pg.1]


See other pages where Hydrogen diradical is mentioned: [Pg.426]    [Pg.426]    [Pg.437]    [Pg.21]    [Pg.66]    [Pg.144]    [Pg.758]    [Pg.771]    [Pg.299]    [Pg.309]    [Pg.313]    [Pg.42]    [Pg.215]    [Pg.215]    [Pg.528]    [Pg.562]    [Pg.434]    [Pg.451]    [Pg.102]    [Pg.325]    [Pg.1513]    [Pg.451]    [Pg.226]    [Pg.434]    [Pg.439]    [Pg.111]    [Pg.112]    [Pg.352]    [Pg.266]    [Pg.20]   
See also in sourсe #XX -- [ Pg.529 ]




SEARCH



Diradical

Diradicals

© 2024 chempedia.info