Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons from Kolbe electrolysis

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

Kolbe electrolysis is generally useful for the formation of hydrocarbons from monocarboxylic acids and for the preparation of many difunctional compounds as well. A specific illustration is the synthesis of esters of long-chain dicarboxylic adds from monoesters of appropriate dicarboxylic acids (see p. 33). A number of these syntheses are discussed by Fichter.4 In the present preparation, a two-compartment cell is employed to avoid, or at least greatly reduce, undesired reduction of the nitro group at the cathode. It seems likely that the procedure could be adapted to the preparation of other difunctional compounds containing groups that are easily reduced. [Pg.79]

Another method involves electrolysis of sodium or potassium carboxylate solutions, known as Kolbe electrolysis, in which carboxylate radicals are formed by transfer of an electron from the carboxylate ion to the anode. Decarboxylation may occur simultaneously with, or subsequent to, the formation of carboxylate radicals, leading to hydrocarbon radicals, which subsequently dimerize ... [Pg.813]

Kolbe noted also the formation of traces of methyl acetate and butyl valerate from electrolysis of acetate and valerate respectively. Careful analysis of reaction products by Petersen (1900) identified compounds which are today formulated as being derived from carbocations formed by loss of one electron from the alkyl radical [50]. Propanoic acid gives mostly ethene while butanoic acid and 2-methyl-propanoic acid give mostly propene. Acetate and long chain alkylcarboxylates give mostly the Kolbe type dimer hydrocarbon on electrolysis of their potassium salts in concentrated solution at a platinum electrode, using high current density and low temperatures [51]. [Pg.312]

Electrolytic decarboxylative coupling of sodium salts of carboxylic acids takes place during their electrolysis. Carbon dioxide is eliminated, and the free radicals thus generated couple to form hydrocarbons or their derivatives. The reaction is referred to as the Kolbe electrosynthesis and is exemplified by the synthesis of 1,8-difluorooctane from 5-fluorovaleric acid (equation 469) [574]. Yields of homologous halogenated acids range from 31% to 82% [574]. [Pg.224]


See other pages where Hydrocarbons from Kolbe electrolysis is mentioned: [Pg.32]    [Pg.1443]    [Pg.1656]    [Pg.48]    [Pg.94]    [Pg.193]    [Pg.312]    [Pg.111]   
See also in sourсe #XX -- [ Pg.860 , Pg.861 , Pg.870 ]




SEARCH



From hydrocarbons

Kolbe

© 2024 chempedia.info