Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons catalytic ammoxidation

The fast fluidized bed reactor can offer several considerable advantages over alternative reactors for many catalytic and non-catalytic reactions, especially for very fast exothermic/endothermic reactions. With the mushrooming of high activity catalysts and the ever increasing pressure for energy conservation, environmental controls, etc., FFB can play more and more important roles in these areas. More potential commercial applications of FFB in the near future include hydrocarbon oxidations, ammoxidation, gasoline and olefines production by concurrent downflow FFB and basic operation for organic chemical productions. [Pg.62]

I 20 Catalytic Ammoxidation of Hydrocarbons on Mixed Oxides lOOi---------------- ------- --------------------... [Pg.782]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

V-containing silicalite, for example, has been shown to have different catalytic properties than vanadium supported on silica in the conversion of methanol to hydrocarbons, NOx reduction with ammonia and ammoxidation of substituted aromatics, butadiene oxidation to furan and propane ammoxidation to acrylonitrile (7 and references therein). However, limited information is available about the characteristics of vanadium species in V-containing silicalite samples and especially regarding correlations with the catalytic behavior (7- 6). [Pg.282]

Thus, in ammonia synthesis, mixed oxide base catalysts allowed new progress towards operating conditions (lower pressure) approaching optimal thermodynamic conditions. Catalytic systems of the same type, with high weight productivity, achieved a decrease of up to 35 per cent in the size of the reactor for the synthesis of acrylonitrile by ammoxidation. Also worth mentioning is the vast development enjoyed as catalysis by artificial zeolites (molecular sieves). Their use as a precious metal support, or as a substitute for conventional silico-aluminaies. led to catalytic systems with much higher activity and selectivity in aromatic hydrocarbon conversion processes (xylene isomerization, toluene dismutation), in benzene alkylation, and even in the oxychlorination of ethane to vinyl chloride. [Pg.414]

Synthetic zeolites have gained importance as industrial catalysts for cracking and isomerization processes, because of their unique pore structures, which allow the shape-selective conversion of hydrocarbons, combined with their surface acidity, which makes them active for acid-catalyzed reactions. Many attempts have been made to introduce redox-active TMI into zeolite structures to create catalytic activity for the selective oxidation and ammoxidation of hydrocarbons as well as for SCR of nitrogen oxides in effluent gases (69-71). In particular, ZSM-5 doped with Fe ions has attracted attention since the surprising discovery of Panov et al. (72) that these materials catalyze the one-step selective oxidation of benzene to phenol... [Pg.287]

A number of bismuth/metal oxides are used in the catalytic oxidation of hydrocarbons, and in the oxidation and ammoxidation of alkenes These transformations are described briefly in Bismuth Inorganic Chemistry. [Pg.361]

The activation of light saturated hydrocarbons becomes increasingly more difficult as the molecules become smaller, with methane reactions being the most difficult to control. On the other hand, the occurrence of non-catalysed gas phase oxidation makes selectivity control very complicted. This is a problem common to almost all oxidations, unless one of the products is extremely stable examples are unsaturated nitriles (e.g. acrylonitrile in the ammoxidation of propane) or maleic anhydride (in the oxidation of butane). There is a parallel trend in the changes of reactivity with molecular weight in catalytic and non catalytic (gas phase) oxidation. The challenge to catalysis to achieve selective reactions at lower temperature is thus equally important for all light hydrocarbons. [Pg.2]


See other pages where Hydrocarbons catalytic ammoxidation is mentioned: [Pg.771]    [Pg.772]    [Pg.774]    [Pg.776]    [Pg.778]    [Pg.780]    [Pg.784]    [Pg.786]    [Pg.788]    [Pg.790]    [Pg.792]    [Pg.794]    [Pg.796]    [Pg.798]    [Pg.800]    [Pg.802]    [Pg.804]    [Pg.806]    [Pg.808]    [Pg.810]    [Pg.812]    [Pg.814]    [Pg.816]    [Pg.818]    [Pg.893]    [Pg.202]    [Pg.274]    [Pg.102]    [Pg.1560]    [Pg.358]    [Pg.21]    [Pg.14]    [Pg.99]    [Pg.189]    [Pg.37]    [Pg.18]    [Pg.1382]    [Pg.178]    [Pg.137]    [Pg.124]    [Pg.5]   


SEARCH



Ammoxidation

Catalytic Ammoxidation of Hydrocarbons on Mixed Oxides

Catalytic ammoxidation

© 2024 chempedia.info