Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride shifts synthesis

Alkene synthesis via alcohol dehydration is complicated by carbocation rearrangements A less stable carbocation can rearrange to a more sta ble one by an alkyl group migration or by a hydride shift opening the possibility for alkene formation from two different carbocations... [Pg.222]

An unusual cationic domino transformation has been observed by Nicolaou and coworkers during their studies on the total synthesis of the natural product azadirachtin (1-105) [30]. Thus, exposure of the substrate 1-106 to sulfuric acid in CHjClj at 0°C led to the smooth production of diketone 1-109 in 80% yield (Scheme 1.27). The reaction is initiated by proto nation of the olefinic bond in 1-106, affording the tertiary carbocation 1-107, which undergoes a 1,5-hydride shift with concomitant disconnection of the oxygen bridge between the two domains of the molecule. Subsequent hydrolysis of the formed oxenium ion 1-108 yielded the diketone 1-109. [Pg.26]

One very fascinating domino reaction is the fivefold anionic/pericydic sequence developed by Heathcockand coworkers for the total synthesis of alkaloids of the Daphniphyllum family [351], of which one example was presented in the Introduction. Another example is the synthesis of secodaphniphylline (2-692) [352]. As depicted in Scheme 2.154, a twofold condensation of methylamine with the dialdehyde 2-686 led to the formation of the dihydropyridinium ion 2-687 which underwent an intramolecular hetero- Diels-Alder reaction to give the unsaturated iminium ion 2-688. This cydized, providing carbocation 2-689. Subsequent 1,5-hydride shift afforded the iminium ion 2-690 which, upon aqueous work-up, is hydrolyzed to give the final product 2-691 in a remarkable yield of about 75 %. In a similar way, dihydrosqualene dialdehyde was transformed into the corresponding polycyclic compound [353]. [Pg.153]

Hydride and 1,2-alkyl shifts represent the most common rearrangement reactions of carbenes and carbenoids. They may be of minor importance compared to inter-molecular or other intramolecular processes, but may also become the preferred reaction modes. Some recent examples for the latter situation are collected in Table 23 (Entries 1-10, 15 1,2-hydride shifts Entries 11-15 1,2-alkyl shifts). Particularly noteworthy is the synthesis of thiepins and oxepins (Entry 11) utilizing such rearrangements, as well as the transformations a-diazo-p-hydroxyester - P-ketoester (Entries 6, 7) and a-diazo-p-hydroxyketone -> P-diketone (Entry 8) which all occur under very mild conditions and generally in high yield. [Pg.226]

In the course of dolastane synthesis (the dolastanes are a group of marine diterpenes) interesting rearrangements catalyzed by Lewis acids were found. Treatment of the trienone 293 with excess (1.5 eq) ethylaluminum dichloride at low temperatures (—5°C, 48 h) gave the tetracyclic enone 295 in 53% yield while the tricyclic dienone 296 (50%) was formed at room temperature (equation 102)156. It was assumed that both products can be derived from the common zwitterion 294 which undergoes intramolecular alkylation at low temperatures (path a) whereas an alkyl shift takes place at elevated temperatures (path b), followed by a 1,2-hydride shift (equation 102). [Pg.790]

The mechanism of the catalytic cycle is outlined in Scheme 1.37 [11]. It involves the formation of a reactive 16-electron tricarbonyliron species by coordination of allyl alcohol to pentacarbonyliron and sequential loss of two carbon monoxide ligands. Oxidative addition to a Jt-allyl hydride complex with iron in the oxidation state +2, followed by reductive elimination, affords an alkene-tricarbonyliron complex. As a result of the [1, 3]-hydride shift the allyl alcohol has been converted to an enol, which is released and the catalytically active tricarbonyliron species is regenerated. This example demonstrates that oxidation and reduction steps can be merged to a one-pot procedure by transferring them into oxidative addition and reductive elimination using the transition metal as a reversible switch. Recently, this reaction has been integrated into a tandem isomerization-aldolization reaction which was applied to the synthesis of indanones and indenones [81] and for the transformation of vinylic furanoses into cydopentenones [82]. [Pg.22]

Thus [6+2] cycloaddition of alkene with complex 306, bearing an optically active side chain, under irradiation at room temperature afforded the bicyclic compound 307 in 98% de [73]. According to the Woodward-Hoffmann rule, the [6+2] cycloaddition proceeds by irradiation, and is thermally forbidden. However, the cycloheptatriene complex 308 underwent 1,5-hydride shift, followed by [6+2] cycloaddition by heating, to give the tricyclic compound 309 in 90% yield [74], The cycloaddition was applied to the synthesis of /f-cedrene [75]. [Pg.386]

The reaction of a BMI with an acetylenic end-capped oligomer has been undertaken. The mechanism was thought to proceed according to the two pathways indicated in Fig. 21 either by a kind of ene synthesis with formation of an hypothetic cycloallene leading to a dihydronaphthalene derivative (pathway a) or by a condensation concerted with an hydride shift (pathway b). No experimental proof was given for the structure but the condensation of both oligomers gave an expected linear product with a better Glc than the one of BMI alone (324 J m 2 vs. 34 J m 2) [73]. [Pg.156]

Hydroxymethyluracil 30, a component of the present-day DNA of Bacillus subtilis bacteriophages [103], was obtained by electrophilic addition of formaldehyde to the C5-C6 double bond of a preformed uracil ring (which is probably the reason for the absence of uracil in the reaction mixture). Thymine was then obtained from 5-hydroxymethyluracil by the hydride shift mechanism shown in Scheme 18 involving formic acid as a product of formaldehyde oxidation. This is the only prebiotic synthesis of thymine so far described starting from one-carbon atom precursors as simple as formamide and formaldehyde. [Pg.43]

Alkylidenecarbenes are valuable intermediates for intermolecular C-H insertion reactions. They allow for a stereo-controlled synthesis of 2,5-diyhdrofurans, since C-H insertion proceeds with retention of configuration at an existing stereocenter. Upon using the Seyferth method for alkylidene carbene formation with the ketoaldehyde 32, the alkylidene intermediate of the aldehyde underwent 1,2-hydride shift, whereas the alkylidene formed from the keto function underwent 1,5-C-H insertion to give the dihydrofuran product (Equation 52) <2005TL7483>. [Pg.519]

The synthesis and relative stability of 3,5-diacyl-4,5-dihydro-l//-pyrazoles prepared by dipolar cycloaddition of enones and a-diazoketones has been published <2004JOC9085>. 3-Acyl-4-aryl-2-pyrazolines have been synthesized by the reaction of a,/3-unsaturated ketones with diazomethane <1996IJB1091>. Ethyl diazoacetate added to 1,3-diarylpropenones in a regioselective fashion to give the intermediate 4,5-dihydto-3//-pyrazole derivative 1,3-hydride shift in the latter led to the formation of the isomeric ethyl 4-aryl-5-aroyl-4,5-dihydro-l//-pyrazole-3-carboxylate and ethyl 4-aryl-3-aroyl-4,5-dihydro-l/7-pyrazole-5-carboxylate in a ratio of 5 1 <2001RJ01517>. 1,3-Dipolar cycloaddition of 2-diazopropane with diarylideneacetones afforded diastereomeric bis-A -pyrazolines <1999T449>. [Pg.97]

SCHEME 18.22 Synthesis of oligosilazane-functionalized borazine by dehydrocoupling of borane dimethylsulfide, BH3 SMe2 and cyclotri(methylsilazane), (SiMeH-NH)3." Intermediates (I) and (II) are proposed. (I) forms by dehydrocoupling of B-H and N-H and stabilizes by trimerization (—> II). Si-N bond cleavage and P-hydride shift result in a borazine-based Si-B-C-N precursor. [Pg.248]

The existence of a free carbonium ion such as VII in a strongly solvating medium is highly improbable. Only if VII could exist in association with the palladium could decomposition to vinyl acetate be expected to occur with a reasonable degree of frequency, in competition with the reaction with acetate to form ethylidene diacetate. Similar results have been reported in the Wacker acetaldehyde synthesis when D2O is used as the solvent (25). Stern (54) has reported results in which 2-deuteropropylene was used as substrate in the reaction. Based on assumed /J-acetoxyalkylpalladium intermediates, on the absence of an appreciable isotope effect in the proton-loss step, and on the product distribution observed, excellent agreement between calculated (71%) and observed (75%) deuterium retention was obtained. Several problems inherent in this study (54) have been discussed in a recent review (I). Hence, considerable additional effort must be expended before a clear-cut decision can be made between a simple / -hydrogen elimination and a palladium-assisted hydride shift in this reaction. [Pg.100]

With the normal substrate the next step would involve a hydride shift to the methylene of the folate and a proton abstraction from C-5, leading to thymidylic acid. Here, however, removal of an F from C-5 is impossible. The result is an irreversible blockade of the enzyme by a ternary covalent complex (Fig. 4-13). The synthesis of thymidylic acid (Fig. [Pg.124]


See other pages where Hydride shifts synthesis is mentioned: [Pg.67]    [Pg.48]    [Pg.555]    [Pg.46]    [Pg.96]    [Pg.1015]    [Pg.69]    [Pg.18]    [Pg.298]    [Pg.1015]    [Pg.1015]    [Pg.177]    [Pg.350]    [Pg.776]    [Pg.360]    [Pg.240]    [Pg.17]    [Pg.144]    [Pg.36]    [Pg.262]   
See also in sourсe #XX -- [ Pg.6 , Pg.726 ]

See also in sourсe #XX -- [ Pg.6 , Pg.726 ]




SEARCH



Hydride shift

Hydrides synthesis

© 2024 chempedia.info