Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbital hybridized

It should be stressed that these polarized orbital pairs are not the same as hybrid orbitals. The latter are used to deseribe direeted bonding, but polarized orbital pairs are eaeh a mixture of two mean-field orbitals with... [Pg.2166]

This is an example of a Mobius reaction system—a node along the reaction coordinate is introduced by the placement of a phase inverting orbital. As in the H - - H2 system, a single spin-pair exchange takes place. Thus, the reaction is phase preserving. Mobius reaction systems are quite common when p orbitals (or hybrid orbitals containing p orbitals) participate in the reaction, as further discussed in Section ni.B.2. [Pg.346]

When elements in Period 2 form covalent bonds, the 2s and 2p orbitals can be mixed or hybridised to form new, hybrid orbitals each of which has. effectively, a single-pear shape, well suited for overlap with the orbital of another atom. Taking carbon as an example the four orbitals 2s.2p.2p.2p can all be mixed to form four new hybrid orbitals (called sp because they are formed from one s and three p) these new orbitals appear as in Figure 2.9. i.e. they... [Pg.55]

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

It is sometimes convenient to combine aos to form hybrid orbitals that have well defined directional character and to then form mos by combining these hybrid orbitals. This recombination of aos to form hybrids is never necessary and never provides any information that could be achieved in its absence. However, forming hybrids often allows one to focus on those interactions among directed orbitals on neighboring atoms that are most important. [Pg.162]

As proven in Chapter 13.Ill, this two-configuration description of Be s electronic structure is equivalent to a description is which two electrons reside in the Is orbital (with opposite, a and (3 spins) while the other pair reside in 2s-2p hybrid orbitals (more correctly, polarized orbitals) in a manner that instantaneously correlates their motions ... [Pg.234]

Mix four atomic orbitals to produce four hybrid orbitals... [Pg.65]

FIGURE 2 8 sp Hybridization (a) Electron configuration of carbon in its most stable state (b) Mixing the s orbital with the three p orbitals generates four sp hybrid orbitals The four sp hybrid orbitals are of equal energy therefore the four valence electrons are distributed evenly among them The axes of the four sp orbitals are directed toward the corners of a tetrahedron... [Pg.65]

FIGURE 2 10 The C—C ct bond in ethane pictured as an overlap of a half filled sp orbital of one carbon with a half filled sp hybrid orbital of the other... [Pg.67]

Ethylene is planar with bond angles close to 120° (Figure 2 15) therefore some hybridization state other than sp is required The hybridization scheme is determined by the number of atoms to which carbon is directly attached In sp hybridization four atoms are attached to carbon by ct bonds and so four equivalent sp hybrid orbitals are required In ethylene three atoms are attached to each carbon so three equivalent hybrid orbitals... [Pg.89]

Each carbon of ethylene uses two of its sp hybrid orbitals to form ct bonds to two hydrogen atoms as illustrated m the first part of Figure 2 17 The remaining sp orbitals one on each carbon overlap along the mternuclear axis to give a ct bond connecting the two carbons... [Pg.90]

FIGURE 2 17 The carbon-carbon double bond in ethylene has a cr component and a tt compo nent The cr component arises from overlap of sp hybridized orbitals along the internuclear axis The tt component results from a side by side overlap of 2p orbitals... [Pg.91]

Because each carbon m acetylene is bonded to two other atoms the orbital hybridization model requires each carbon to have two equivalent orbitals available for CT bonds as outlined m Figure 2 19 According to this model the carbon 2s orbital and one of Its 2p orbitals combine to generate two sp hybrid orbitals each of which has 50% s character and 50% p character These two sp orbitals share a common axis but their major lobes are oriented at an angle of 180° to each other Two of the original 2p orbitals remain unhybridized... [Pg.92]

Section 2 6 Bonding m methane is most often described by an orbital hybridization model which is a modified form of valence bond theory Four equiva lent sp hybrid orbitals of carbon are generated by mixing the 2s 2p 2py and 2p orbitals Overlap of each half filled sp hybrid orbital with a half filled hydrogen Is orbital gives a ct bond... [Pg.95]


See other pages where Orbital hybridized is mentioned: [Pg.207]    [Pg.2166]    [Pg.2166]    [Pg.56]    [Pg.58]    [Pg.179]    [Pg.391]    [Pg.395]    [Pg.261]    [Pg.150]    [Pg.157]    [Pg.158]    [Pg.162]    [Pg.162]    [Pg.163]    [Pg.163]    [Pg.164]    [Pg.165]    [Pg.173]    [Pg.174]    [Pg.175]    [Pg.179]    [Pg.179]    [Pg.180]    [Pg.125]    [Pg.64]    [Pg.64]    [Pg.67]    [Pg.90]    [Pg.90]    [Pg.91]    [Pg.93]    [Pg.146]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Hybrid orbital

Hybrid orbitals Hybridization

Orbital hybridization

Orbitals hybrid

Orbitals hybridization

Orbitals, hybridized

© 2024 chempedia.info