Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hybrid carbon orbitals

When elements in Period 2 form covalent bonds, the 2s and 2p orbitals can be mixed or hybridised to form new, hybrid orbitals each of which has. effectively, a single-pear shape, well suited for overlap with the orbital of another atom. Taking carbon as an example the four orbitals 2s.2p.2p.2p can all be mixed to form four new hybrid orbitals (called sp because they are formed from one s and three p) these new orbitals appear as in Figure 2.9. i.e. they... [Pg.55]

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

The axes of the sp orbitals point toward the corners of a tetrahedron Therefore sp hybridization of carbon is consistent with the tetrahedral structure of methane Each C—H bond is a ct bond m which a half filled Is orbital of hydrogen over laps with a half filled sp orbital of carbon along a line drawn between them... [Pg.64]

FIGURE 2 8 sp Hybridization (a) Electron configuration of carbon in its most stable state (b) Mixing the s orbital with the three p orbitals generates four sp hybrid orbitals The four sp hybrid orbitals are of equal energy therefore the four valence electrons are distributed evenly among them The axes of the four sp orbitals are directed toward the corners of a tetrahedron... [Pg.65]

FIGURE 2 10 The C—C ct bond in ethane pictured as an overlap of a half filled sp orbital of one carbon with a half filled sp hybrid orbital of the other... [Pg.67]

Ethylene is planar with bond angles close to 120° (Figure 2 15) therefore some hybridization state other than sp is required The hybridization scheme is determined by the number of atoms to which carbon is directly attached In sp hybridization four atoms are attached to carbon by ct bonds and so four equivalent sp hybrid orbitals are required In ethylene three atoms are attached to each carbon so three equivalent hybrid orbitals... [Pg.89]

Each carbon of ethylene uses two of its sp hybrid orbitals to form ct bonds to two hydrogen atoms as illustrated m the first part of Figure 2 17 The remaining sp orbitals one on each carbon overlap along the mternuclear axis to give a ct bond connecting the two carbons... [Pg.90]

FIGURE 2 17 The carbon-carbon double bond in ethylene has a cr component and a tt compo nent The cr component arises from overlap of sp hybridized orbitals along the internuclear axis The tt component results from a side by side overlap of 2p orbitals... [Pg.91]

Because each carbon m acetylene is bonded to two other atoms the orbital hybridization model requires each carbon to have two equivalent orbitals available for CT bonds as outlined m Figure 2 19 According to this model the carbon 2s orbital and one of Its 2p orbitals combine to generate two sp hybrid orbitals each of which has 50% s character and 50% p character These two sp orbitals share a common axis but their major lobes are oriented at an angle of 180° to each other Two of the original 2p orbitals remain unhybridized... [Pg.92]

Section 2 6 Bonding m methane is most often described by an orbital hybridization model which is a modified form of valence bond theory Four equiva lent sp hybrid orbitals of carbon are generated by mixing the 2s 2p 2py and 2p orbitals Overlap of each half filled sp hybrid orbital with a half filled hydrogen Is orbital gives a ct bond... [Pg.95]

The structure of ethylene and the orbital hybridization model for its double bond were presented m Section 2 20 and are briefly reviewed m Figure 5 1 Ethylene is planar each carbon is sp hybridized and the double bond is considered to have a a component and a TT component The ct component arises from overlap of sp hybrid orbitals along a line connecting the two carbons the tt component via a side by side overlap of two p orbitals Regions of high electron density attributed to the tt electrons appear above and below the plane of the molecule and are clearly evident m the electrostatic potential map Most of the reactions of ethylene and other alkenes involve these electrons... [Pg.190]

Bonding m alkenes is described according to an sp orbital hybridization model The double bond unites two sp hybridized carbon atoms and is made of a ct component and a rr component The ct bond arises by over lap of an sp hybrid orbital on each carbon The rr bond is weaker than the CT bond and results from a side by side overlap of p orbitals... [Pg.220]

FIGURE 8 2 Hybrid orbital description of the bonding changes that take place at carbon during nucleophilic substitution by the Sn2 mechanism... [Pg.333]

All of these trends can be accommodated by the orbital hybridization model The bond angles are characteristic for the sp sp and sp hybridization states of carbon and don t require additional comment The bond distances bond strengths and acidities are related to the s character m the orbitals used for bonding s Character is a simple concept being nothing more than the percentage of the hybrid orbital contributed by an s orbital Thus an sp orbital has one quarter s character and three quarters p an sp orbital has one third s and two thirds p and an sp orbital one half s and one half p We then use this information to analyze how various qualities of the hybrid orbital reflect those of its s and p contributors... [Pg.366]

In addition to its three sp hybrid orbitals each carbon has a half filled 2p orbital that can participate m tt bonding Figure >b shows the continuous rr system that encompasses all of the carbons that result from overlap of these 2p orbitals The six tt electrons of benzene are delocalized over all six carbons... [Pg.430]

FIGURE 14 3 (a) The unshared electron pair occupies an sp hybridized orbital in dichlorocarbene There are no electrons in the unhybridized p orbital (b) An electrostatic potential map of dichlorocarbene shows negative charge is concentrated in the region of the unshared pair and positive charge above and below the carbon... [Pg.607]

An orbital hybridization description of bonding m methylamme is shown m Figure 22 2 Nitrogen and carbon are both sp hybridized and are joined by a ct bond The unshared electron pair on nitrogen occupies an sp hybridized orbital This lone parr IS involved m reactions m which amines act as bases or nucleophiles The graphic that opened this chapter is an electrostatic potential map that clearly shows the concentration of electron density at nitrogen m methylamme... [Pg.916]

The sp hybrid state of nitrogen is just like that of carbon except nitrogen has one more electron Each N—H bond in NH3 involves overlap of an sp hybrid orbital of N with a li orbital of hydrogen The unshared pair of NH3 occupies an sp orbital... [Pg.1202]

Each carbon in propane is bonded to four atoms and is sp hybridized The C—C bonds are a bonds involving overlap of a half filled sp hybrid orbital of one carbon with a half filled sp hybrid orbital of the other The C—H bonds are a bonds involving overlap of a half filled sp hybrid onbital of carbon with a half filled hydrogen li orbital... [Pg.1202]

The C—C single bond in vmylacetylene is a a bond generated by overlap of an sp hybridized orbital on one carbon with an sp hybndized orbital on the other Vmylacetylene has three u bonds and three tt bonds... [Pg.1203]

Here, the bonding between carbon atoms is briefly reviewed fuller accounts can be found in many standard chemistry textbooks, e.g., [1]. The carbon atom [ground state electronic configuration (ls )(2s 2px2py)] can form sp sp and sp hybrid bonds as a result of promotion and hybridisation. There are four equivalent 2sp hybrid orbitals that are tetrahedrally oriented about the carbon atom and can form four equivalent tetrahedral a bonds by overlap with orbitals of other atoms. An example is the molecule ethane, CjH, where a Csp -Csp (or C-C) a bond is formed between two C atoms by overlap of sp orbitals, and three Csp -Hls a bonds are formed on each C atom. Fig. 1, Al. [Pg.1]

A second type of hybridisation of the valence electrons in the carbon atom can occur to form three 2sp hybrid orbitals leaving one unhybridised 2p orbital. [Pg.1]

In the third type of hybridisation of the valence electrons of carbon, two linear 2sp orbitals are formed leaving two unhybridised 2p orbitals. Linear a bonds are formed by overlap of the sp hybrid orbitals with orbitals of neighbouring atoms, as in the molecule ethyne (acetylene) C2H2, Fig. 1, A3. The unhybridised p orbitals of the carbon atoms overlap to form two n bonds the bonds formed between two C atoms in this way are represented as Csp Csp, or simply as C C. [Pg.2]


See other pages where Hybrid carbon orbitals is mentioned: [Pg.467]    [Pg.275]    [Pg.487]    [Pg.275]    [Pg.203]    [Pg.66]    [Pg.467]    [Pg.275]    [Pg.487]    [Pg.275]    [Pg.203]    [Pg.66]    [Pg.56]    [Pg.179]    [Pg.64]    [Pg.64]    [Pg.67]    [Pg.90]    [Pg.91]    [Pg.146]    [Pg.607]    [Pg.707]    [Pg.917]    [Pg.21]    [Pg.7]    [Pg.66]    [Pg.223]    [Pg.4]    [Pg.4]    [Pg.5]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.26 , Pg.27 , Pg.28 , Pg.29 , Pg.30 , Pg.31 , Pg.32 ]




SEARCH



5/7-hybridized carbon

Carbon atom hybridized orbitals

Carbon compounds bonding orbital hybridization

Carbon dioxide hybrid orbitals

Carbon hybridization

Carbon monoxide hybrid orbitals

Carbon sp hybrid orbitals

Carbon sp2 hybrid orbitals

Carbon sp3 hybrid orbitals

Carbon valence orbitals hybridization

Hybrid orbital

Hybrid orbitals Hybridization

Hybrid orbitals carbon radical

Hybrid orbitals in carbon

Orbital hybridization

Orbitals hybrid

Orbitals hybridization

Orbitals, hybridized

© 2024 chempedia.info