Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homocysteine synthase

N5-Methyltetrahydrofolate homocysteine methyl-transferase (= methionine synthase). This reaction is essential to restore tetrahydrofolate from N5-methyltetrahydrofolate (Fig. 2). [Pg.1291]

When acting as a methyl donor, 5-adenosylmethionine forms homocysteine, which may be remethylated by methyltetrahydrofolate catalyzed by methionine synthase, a vitamin Bj2-dependent enzyme (Figure 45-14). The reduction of methylene-tetrahydrofolate to methyltetrahydrofolate is irreversible, and since the major source of tetrahydrofolate for tissues is methyl-tetrahydrofolate, the role of methionine synthase is vital and provides a link between the functions of folate and vitamin B,2. Impairment of methionine synthase in Bj2 deficiency results in the accumulation of methyl-tetrahydrofolate—the folate trap. There is therefore functional deficiency of folate secondary to the deficiency of vitamin B,2. [Pg.494]

In mammals and in the majority of bacteria, cobalamin regulates DNA synthesis indirectly through its effect on a step in folate metabolism, catalyzing the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate via two methyl transfer reactions. This cytoplasmic reaction is catalyzed by methionine synthase (5-methyltetrahydrofolate-homocysteine methyl-transferase), which requires methyl cobalamin (MeCbl) (253), one of the two known coenzyme forms of the complex, as its cofactor. 5 -Deoxyadenosyl cobalamin (AdoCbl) (254), the other coenzyme form of cobalamin, occurs within mitochondria. This compound is a cofactor for the enzyme methylmalonyl-CoA mutase, which is responsible for the conversion of T-methylmalonyl CoA to succinyl CoA. This reaction is involved in the metabolism of odd chain fatty acids via propionic acid, as well as amino acids isoleucine, methionine, threonine, and valine. [Pg.100]

Fig. 14.10 Folate metabolism and role of MTHFR. Genetically reduced MTHFR activity affects the distribution between folate species required for protein and DNA synthesis. Higher availabil ity of 5,10-methylenetetrahydrofolate (CH2THF) potentiates the TS inhibition by 5-FdUMP, the active metabolite of 5-FU. Hey, homocysteine Met, methionine CH3HF, 5-methyltetrahydrofolate TS, thymidylate synthase 5-FdUMP, fluorodeoxyuridine monophosphate. Fig. 14.10 Folate metabolism and role of MTHFR. Genetically reduced MTHFR activity affects the distribution between folate species required for protein and DNA synthesis. Higher availabil ity of 5,10-methylenetetrahydrofolate (CH2THF) potentiates the TS inhibition by 5-FdUMP, the active metabolite of 5-FU. Hey, homocysteine Met, methionine CH3HF, 5-methyltetrahydrofolate TS, thymidylate synthase 5-FdUMP, fluorodeoxyuridine monophosphate.
Chen, X., Jhee, K.-H. and Kruger, W. D. Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. /. Biol. Chem. 279 52082-52086, 2004. [Pg.183]

Methionine synthase deficiency (cobalamin-E disease) produces homocystinuria without methylmalonic aciduria 677 Cobalamin-c disease remethylation of homocysteine to methionine also requires an activated form of vitamin B12 677 Hereditary folate malabsorption presents with megaloblastic anemia, seizures and neurological deterioration 678... [Pg.667]

The most common cause of homocystinuria is a congenital deficiency of cystathionine-p-synthase, a pyridoxine-dependent enzyme that condenses homocysteine and... [Pg.675]

Homocystinuria can be treated in some cases by the administration of pyridoxine (vitamin Bs), which is a cofactor for the cystathionine synthase reaction. Some patients respond to the administration of pharmacological doses of pyridoxine (25-100 mg daily) with a reduction of plasma homocysteine and methionine. Pyridoxine responsiveness appears to be hereditary, with sibs tending to show a concordant pattern and a milder clinical syndrome. Pyridoxine sensitivity can be documented by enzyme assay in skin fibroblasts. The precise biochemical mechanism of the pyridoxine effect is not well understood but it may not reflect a mutation resulting in diminished affinity of the enzyme for cofactor, because even high concentrations of pyridoxal phosphate do not restore mutant enzyme activity to a control level. [Pg.676]

SMM synthesis is mediated by the enzyme methionine S-methyltransferase (MMT) through the essentially irreversible, AdoMet-mediated methylation of methionine.48"5 Both MMT and SMM are unique to plants 48,50 The opposite reaction, in which SMM is used to methylate homocysteine to yield two molecules of methionine, is catalyzed by the enzyme homocysteine S-methyltransferase (HMT).48 Unlike MMT, HMTs also occur in bacteria, yeast, and mammals, enabling them to catabolize SMM of plant origin, and providing an alternative to the methionine synthase reaction as a means to methylate homocysteine. Plant MMT and HMT reactions, together with those catalyzed by AdoMet synthetase and AdoHcy hydrolase, constitute the SMM cycle (Fig. 2.4).4... [Pg.24]

The best characterized B 12-dependent methyltransferases is methionine synthase (Figure 15.11) from E. coli, which catalyses the transfer of a methyl group from methyltetrahydrofolate to homocysteine to form methionine and tetrahydrofolate. During the catalytic cycle, B12 cycles between CH3-Co(in) and Co(I). However, from time to time, Co(I) undergoes oxidative inactivation to Co(II), which requires reductive activation. During this process, the methyl donor is S-adenosylmethionine (AdoMet) and the electron donor is flavodoxin (Fid) in E. coli, or methionine synthase reductase (MSR) in humans. Methionine synthase... [Pg.266]

Figure 15.12 The modular structure of methionine synthase. The four domains are connected by flexible hinges, which allow the CH3tetrahydrofolate-, AdoMet- or homocystein-binding domains to alternatively access the B12-binding domain. (From Bannerjee and Ragsdale, 2003. Reprinted with permission from Annual Reviews.)... Figure 15.12 The modular structure of methionine synthase. The four domains are connected by flexible hinges, which allow the CH3tetrahydrofolate-, AdoMet- or homocystein-binding domains to alternatively access the B12-binding domain. (From Bannerjee and Ragsdale, 2003. Reprinted with permission from Annual Reviews.)...
Homocysteinuria (cystathionine synthase or homocysteine methyl transferase)... [Pg.257]

Answer C Only methionine is degraded via the homocysteine/cystathionine pathway and would be elevated in the plasma of a cystathionine synthase-deficient patient via activation of homocysteine methyl-transferase by excess substrate. [Pg.263]

Figure 22.7 Homocysteine formation from methionine and formation of thiolactone from homocysteine. The homocysteine concentration depends upon a balance between the activities of homocysteine methyltransferase (methionine synthase) and cystathionine p-synthase. Both these enzymes require vitamin B12, so a deficiency can lead to an increase in the plasma level of homocysteine. (For details of these reactions, see Chapter 15.) Homocysteine oxidises spontaneously to form thiolactone, which can damage cell membrane. Figure 22.7 Homocysteine formation from methionine and formation of thiolactone from homocysteine. The homocysteine concentration depends upon a balance between the activities of homocysteine methyltransferase (methionine synthase) and cystathionine p-synthase. Both these enzymes require vitamin B12, so a deficiency can lead to an increase in the plasma level of homocysteine. (For details of these reactions, see Chapter 15.) Homocysteine oxidises spontaneously to form thiolactone, which can damage cell membrane.
A simple observation led to the identification of homocysteine as a risk factor for coronary heart disease. Homocysteine is an intermediate in metabolism of the amino acid methionine. Indeed, the first reaction in the catabolism of methionine involves the formation of homocysteine but it can be converted back to methionine in a reaction that is catalysed by methionine synthase (see Figure 22.7). [Pg.517]

In a totally different field, studies were being carried out on children who had a deficiency of methionine synthase and an impaired ability to convert homocysteine to methionine, so that they had increased blood levels of homocysteine. It was noted that these children had an increased incidence of thrombosis in cerebral and coronary arteries. This led to a study which eventually showed that an increased level of homocysteine was a risk factor for coronary artery disease in adults. Since methionine synthase requires the vitamins, folic acid and B12, for its catalytic activity, it has been suggested that an increased intake of these vitamins could encourage the conversion of homocysteine to methionine and hence decrease the plasma level of homocysteine. This is particularly the case for the elderly who are undernourished (see Chapter 15 for a discussion of nutrition in the elderly). [Pg.517]

Further to this, the enzyme cystathionine P-synthase is involved in the catabolism of homocysteine, so that a deficiency of this enzyme also results in an elevated level of homocysteine in the blood. Consequently, patients with a deficiency, even a partial deficiency, could also suffer an increased risk of coronary artery disease. [Pg.517]

This pyridoxal-phosphate-dependent enzyme [EC 4.2.1.22] (also known as serine sulfhydrase, /3-thionase, and methylcysteine synthase) catalyzes the reaction of homocysteine with serine to produce cystathionine and water. [Pg.180]

This cobalamin-dependent enzyme [EC 2.1.1.13], also known as methionine synthase and tetrahydropteroyl-glutamate methyltransferase, catalyzes the reaction of 5-methyltetrahydrofolate with L-homocysteine to produce tetrahydrofolate and L-methionine. Interestingly, the bacterial enzyme is reported to require 5-adenosyl-L-methionine and FADH2. See also Tetrahydropteroyl-triglutamate Methyltransferase... [Pg.462]

This pyridoxal-phosphate-dependent enzyme [EC 4.2.99.9], also known as cystathionine y-synthase, catalyzes the reaction of O-succinyl-L-homoserine with L-cysteine to produce cystathionine and succinate. The enzyme can also use hydrogen sulfide and methanethiol as substrates, producing homocysteine and methionine, respectively. In the absence of a thiol, the enzyme can also catalyze a /3,y-elimination reaction to form 2-oxobu-tanoate, succinate, and ammonia. [Pg.665]

This enzyme [EC 2.1.1.14], also known as 5-methyltet-rahydropteroyltriglutamate homocysteine 5-methyltrans-ferase and methionine synthase, catalyzes the reaction of 5-methyltetrahydropteroyltri-L-glutamate with L-homo-cysteine to produce tetrahydropteroyltri-L-glutamate and L-methionine. The reaction requires the presence of phosphate. The enzyme isolated from E. coli also requires a reducing system. See N -Methyltetrahydrofo-late. Homocysteine Methyltransferase... [Pg.673]

Cystathionine [i-synthase catalyzes conversion of homocysteine to cystathionine, a critical precursor of cysteine. [Pg.25]

Gonversion of homocysteine to Gys occurs in two reactions catalyzed by two pyridoxal phosphate-requiring enzymes, cystathionine p-synthase and y-cystathionase. [Pg.129]

The major type is caused by cystathionine fi-synthase deficiency, leading to accumulation of upstream intermediates in the pathway, especially homocysteine. [Pg.130]

The answer is A. The constellation of symptoms exhibited by this patient is characteristic of homocystinuria. The impairment of her cognitive function could be attributed to many conditions, but the key findings are ectopia lentis with downward lens dislocation and osteoporosis in a female of this age. Homocystinuria is produced by inherited deficiency of one of the enzymes in the pathway of Met conversion to Cys. The most common form is cystathionine P-synthase deficiency, which results in accumulation of all upstream components of the pathway, including homocysteine, which is responsible for the toxic effects, and Met, which becomes elevated in the blood. Cystathionine and cysteine, which are both downstream of the block in the pathway caused by cystathionine P Synthase deficiency, would be decreased. Metabolic pathways for lactate and urea are not involved in this disease mechanism. [Pg.138]

Fig. 2.2.1 Outline of homocysteine metabolism in man. BMT Betaine methyltransferase, cblC cobalamin defect type C, cblD cobalamin defect type D, GNMT def glycine N-methyltransferase deficiency, MAT methionine adenosyl transferase, MeCbl methylcobalamin, Met Synth methionine synthase, MTHFR methylenetetrahydrofolate reductase, SAH Hyd dc/S-adenosylhomocys-... Fig. 2.2.1 Outline of homocysteine metabolism in man. BMT Betaine methyltransferase, cblC cobalamin defect type C, cblD cobalamin defect type D, GNMT def glycine N-methyltransferase deficiency, MAT methionine adenosyl transferase, MeCbl methylcobalamin, Met Synth methionine synthase, MTHFR methylenetetrahydrofolate reductase, SAH Hyd dc/S-adenosylhomocys-...
Transfer of the methyl group from 5,-adenosylmethi-onine to an acceptor yields S -adenosylhomocysteine (Fig. 18-18, step (2)), which is subsequently broken down to homocysteine and adenosine (step (3)). Methionine is regenerated by transfer of a methyl group to homocysteine in a reaction catalyzed by methionine synthase (step (4)), and methionine is reconverted to 5-adenosyl-methionine to complete an activated-methyl cycle. [Pg.674]

The homocystinurias are a group of disorders involving defects in the metabolism of homocysteine. The diseases are inherited as autosomal recessive illnesses, characterized by high plasma and urinary levels of homocysteine and methionine and low levels of cysteine. The most common cause of homocystinuria is a defect in the enzyme cystathionine /3-synthase, which converts homocysteine to cystathionine (Figure 20.21). Individuals who are homozygous for cystathionine [3-synthase deficiency exhibit ectopia lentis (displace ment of the lens of the eye), skeletal abnormalities, premature arte rial disease, osteoporosis, and mental retardation. Patients can be responsive or non-responsive to oral administration of pyridoxine (vitamin B6)—a cofactor of cystathionine [3-synthase. Bg-responsive patients usually have a milder and later onset of clinical symptoms compared with B6-non-responsive patients. Treatment includes restriction of methionine intake and supplementation with vitamins Bg, B, and folate. [Pg.271]

The product of transmethylation, S-adenosylhomocysteine, is converted (step g) into homocysteine in an unusual NAD-dependent hydrolytic reaction (Eq. 15-14) by which adenosine is removed (step g).302c Homocysteine can be reconverted to methionine, as indicated by the dashed line in Fig. 24-16. This can be accomplished by the vitamin B12-and tetrahydrofolate-dependent methionine synthase, (Eq. 16-43), which transfers a methyl group from methyl-tetrahydrofolate303 303b by transfer of a methyl group from betaine, a trimethylated glycine (Eq. 24-33)304, or by remethylation with AdoMet (Fig. 24-16).304a... [Pg.1388]

When present in excess methionine is toxic and must be removed. Transamination to the corresponding 2-oxoacid (Fig. 24-16, step c) occurs in both animals and plants. Oxidative decarboxylation of this oxoacid initiates a major catabolic pathway,305 which probably involves (3 oxidation of the resulting acyl-CoA. In bacteria another catabolic reaction of methionine is y-elimination of methanethiol and deamination to 2-oxobutyrate (reaction d, Fig. 24-16 Fig. 14-7).306 Conversion to homocysteine, via the transmethylation pathway, is also a major catabolic route which is especially important because of the toxicity of excess homocysteine. A hereditary deficiency of cystathionine (3-synthase is associated with greatly elevated homocysteine concentrations in blood and urine and often disastrous early cardiovascular disease.299,307 309b About 5-7% of the general population has an increased level of homocysteine and is also at increased risk of artery disease. An adequate intake of vitamin B6 and especially of folic acid, which is needed for recycling of homocysteine to methionine, is helpful. However, if methionine is in excess it must be removed via the previously discussed transsulfuration pathway (Fig. 24-16, steps h and z ).310 The products are cysteine and 2-oxobutyrate. The latter can be oxidatively decarboxylated to propionyl-CoA and further metabolized, or it can be converted into leucine (Fig. 24-17) and cysteine may be converted to glutathione.2993... [Pg.1389]

Cysteine is formed in plants and in bacteria from sulfide and serine after the latter has been acetylated by transfer of an acetyl group from acetyl-CoA (Fig. 24-25, step f). This standard PLP-dependent (3 replacement (Chapter 14) is catalyzed by cysteine synthase (O-acetylserine sulfhydrase).446 447 A similar enzyme is used by some cells to introduce sulfide ion directly into homocysteine, via either O-succinyl homoserine or O-acetyl homoserine (Fig. 24-13). In E. coli cysteine can be converted to methionine, as outlined in Eq. lb-22 and as indicated on the right side of Fig. 24-13 by the green arrows. In animals the converse process, the conversion of methionine to cysteine (gray arrows in Fig. 24-13, also Fig. 24-16), is important. Animals are unable to incorporate sulfide directly into cysteine, and this amino acid must be either provided in the diet or formed from dietary methionine. The latter process is limited, and cysteine is an essential dietary constituent for infants. The formation of cysteine from methionine occurs via the same transsulfuration pathway as in methionine synthesis in autotrophic organisms. However, the latter use cystathionine y-synthase and P-lyase while cysteine synthesis in animals uses cystathionine P-synthase and y-lyase. [Pg.1407]

A5-Methyltetrahydrofolate is the methyl-group donor substrate for methionine synthase, which catalyzes the transfer of the five-methyl group to the sulfhydryl group of homocysteine. This and selected reactions of the other folate derivatives are outlined in figure 10.15, which emphasizes the important role tetrahydrofolate plays in nucleic acid biosynthesis by serving as the immediate source of one-carbon units in purine and pyrimidine biosynthesis. [Pg.215]

In some organisms sulfur incorporation involves homocysteine as an intermediate. In such cases cysteine formation occurs by a transsulfuration reaction, with the intermediate formation of L,L-cystathionine (fig. 21.86). Cystathionine is formed in a simple condensation reaction from serine and homocysteine by cystathionine-jS synthase. [Pg.495]


See other pages where Homocysteine synthase is mentioned: [Pg.496]    [Pg.59]    [Pg.496]    [Pg.59]    [Pg.102]    [Pg.1195]    [Pg.337]    [Pg.237]    [Pg.238]    [Pg.676]    [Pg.21]    [Pg.324]    [Pg.233]    [Pg.414]    [Pg.336]    [Pg.263]    [Pg.1383]    [Pg.1388]   


SEARCH



Homocysteine

Homocysteine metabolism methionine synthase

© 2024 chempedia.info