Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homoallylic synthesis

The last group of reactions uses ring opening of carbonyl or 1-hydroxyalkyl substituted cyclopropanes, which operate as a -synthons. d -Synthons, e.g. hydroxide or halides, yield 1,4-disubstituted products (E. Wenkert, 1970 A). (1-Hydroxyalkyl)- and (1-haloalkyl)-cyclopropanes are rearranged to homoallylic halides, e.g. in Julia s method of terpene synthesis (M. Julia, 1961, 1974 S.F. Brady, I968 J.P. McCormick, 1975). [Pg.69]

Organoboranes are reactive compounds for cross-coupling[277]. The synthesis of humulene (83) by the intramolecular cross-coupling of allylic bromide with alkenylborane is an example[278]. The reaction of vinyiborane with vinyl-oxirane (425) affords the homoallylic alcohol 426 by 1,2-addition as main products and the allylic alcohol 427 by 1,4-addition as a minor product[279]. Two phenyl groups in sodium tetraphenylborate (428) are used for the coupling with allylic acetate[280] or allyl chloride[33,28l]. [Pg.347]

HOFFMAN - YAMAMOTO Stereoselective adylations Synthesis of syn or anti homoallylic alcohols from Z or E crotylboronate and aldehydes (Hoffman) or of syn homoallylic alcohols from crotylstannanes, BF3 and aldehydes (Yamamoto)... [Pg.177]

The synthesis of 11 jS-hydroxy-A -3-ketones (17) from A ° -compounds (16) has been carried out by the homoallylic hydroxyl-assisted Simmons-Smith reaction. [Pg.111]

An elegant application of the Vilsmeier reaction is the synthesis of substituted biphenyls as reported by Rao and RaoJ Starting with homoallylic alcohol 8, the biphenyl derivative 9 was obtained from a one-pot reaction in 80% yield ... [Pg.281]

Scheme 1). Introduction of a jt bond into the molecular structure of 1 furnishes homoallylic amine 2 and satisfies the structural prerequisite for an aza-Prins transform.4 Thus, disconnection of the bond between C-2 and C-3 affords intermediate 3 as a viable precursor. In the forward sense, a cation ji-type cyclization, or aza-Prins reaction, could achieve the formation of the C2-C3 bond and complete the assembly of the complex pentacyclic skeleton of the target molecule (1). Reduction of the residual n bond in 2, hydro-genolysis of the benzyl ether, and adjustment of the oxidation state at the side-chain terminus would then complete the synthesis of 1. [Pg.466]

Hodgson et al. showed that a series of bis- and tris-homoallylic terminal epoxides underwent intramolecular cydopropanation to give a range of bicydic alcohols. A short asymmetric synthesis of sabina ketone based on this chemistry was demonstrated (Scheme 5.20). A practical advantage with this process is that the volatile epoxides can be replaced with readily available chlorohydrins, an extra... [Pg.155]

An unprecedented nickel-catalyzed reductive coupling between an epoxide and an alkyne to give synthetically useful homoallylic alcohols has been developed by Jamison [55a], and was recently used in a short enantioselective synthesis of am-... [Pg.290]

Allylboron compounds have proven to be an exceedingly useful class of allylmetal reagents for the stereoselective synthesis of homoallylic alcohols via reactions with carbonyl compounds, especially aldehydes1. The reactions of allylboron compounds and aldehydes proceed by way of cyclic transition states with predictable transmission of olefinic stereochemistry to anti (from L-alkene precursors) or syn (from Z-alkene precursors) relationships about the newly formed carbon-carbon bond. This stereochemical feature, classified as simple diastereoselection, is general for Type I allylorganometallicslb. [Pg.260]

Improved methods for the preparation of reagents such as isopinocampheyl(l-isopinocam-pheyl-2-alkenyl)borinic acids will certainly lead to a more enantioselective synthesis of anti-homoallylic alcohols, since the enantiomeric purity of the reagent is the only significant limitation to the synthetic utility of this reagent system. [Pg.326]

Two approaches for the synthesis of allyl(alkyl)- and allyl(aryl)tin halides are thermolysis of halo(alkyl)tin ethers derived from tertiary homoallylic alcohols, and transmetalation of other allylstannanes. For example, dibutyl(-2-propenyl)tin chloride has been prepared by healing dibutyl(di-2-propenyl)stannane with dibutyltin dichloride42, and by thermolysis of mixtures of 2,3-dimethyl-5-hexen-3-ol or 2-methyl-4-penten-2-ol and tetrabutyl-l,3-dichlorodistannox-ane39. Alternatively dibutyltin dichloride and (dibutyl)(dimethoxy)tin were mixed to provide (dibutyl)(methoxy)tin chloride which was heated with 2,2,3-trimethyl-5-hexen-3-ol40. [Pg.365]

Provided that the silanolate elimination proceeds with anti selectivity, it must be concluded, that the intermediate homoallylic alcohol has an anti configuration, and thus the reagent has an ( -configuration. Acidic hydrolysis of the enol ether leads to enones the overall sequence consists of a nucleophilic acroylation. This has also been applied in the total synthesis of the marine diterpene ( )-aplysin-2067. [Pg.413]

Examples of a desulphonylation procedure on complex molecules are provided by Fuchs and coworkers199 who reported on a triply convergent synthesis of L-( —)-prostaglandin E2. The molecules can be classified as homoallylic sulphones and reductive desulphonylation was best achieved with a mixture of sodium methoxide and sodium borohydride in methanol, with yields being better than 90%, despite the complexity of the molecules involved (equation 87). [Pg.960]

Enyne metathesis starting either from acetylenic boronates and homoallylic alcohols [104a,c] or from propargyl alcohols and allylboronates [104b] has recently been described. The resulting boronated dienes can be converted to allenes or cycloaddition products. The cross metathesis of vinylcyclopropyl-boronates directed toward the total synthesis of natural products has very recently been investigated by Pietruszka et al. [104d]. [Pg.256]

An (E)-selective CM reaction with an acrylate (Scheme 61) was applied by Smith and O Doherty in the enantioselective synthesis of three natural products with cyclooxygenase inhibitory activity (cryptocarya triacetate (312), cryptocaryolone (313), and cryptocaryolone diacetate (314)) [142]. CM reaction of homoallylic alcohol 309 with ethyl acrylate mediated by catalyst C led (E)-selectively to d-hydroxy enoate 310 in near quantitative yield. Subsequent Evans acetal-forming reaction of 310, which required the trans double bond in 310 to prevent lactonization, led to key intermediate 311 that was converted to 312-314. [Pg.332]

A second convergent synthesis of haliclamine A (64) was achieved in a stepwise sequence from cyclopropyl(thiophen-2-yl)methanone (76) (Scheme 7) [37]. The protected thiophene 77 was condensed with formyl-piperidine to give 78, suitable for a Wittig olefination with 79. After desulfurization of the product 80, the deprotected alcohol 82 was subjected to homoallylic rearrangement using MesSiBr in the presence of ZnBr2. The re-... [Pg.229]

Indium-mediated allylation of an unreactive halide with an aldehyde132 was used to synthesize an advanced intermediate in the synthesis of antillatoxin,133 a marine cyanobacteria (Lyngbya majus-cula) that is one of the most ichthyotoxic compounds isolated from a marine plant to date. In the presence of a lanthanide triflate, the indium-mediated allylation of Z-2-bromocrotyl chloride and aldehyde in saturated NH4C1 under sonication yielded the desired advanced intermediate as a 1 1 mixture of diastereomers in 70% yield. Loh et al.134 then changed the halide compound to methyl (Z)-2-(bromomethyl)-2-butenoate and coupled it with aldehyde under the same conditions to yield the desired homoallylic alcohol in 80% yield with a high 93 7 syn anti selectivity (Eq. 8.55). [Pg.242]

B. Potassium allyl- and crotyltrifluoroborates undergo addition to aldehydes in biphasic media as well as water to provide homoallylic alcohol in high yields (>94%) and excellent diastereoselectivity (dr >98 2). The presence of a phase-transfer catalyst (e.g., B114NI) significantly accelerates the rate of reaction, whereas adding fluoride ion retards the reaction (Eq. 8.70).165 The method was applied to the asymmetric total synthesis of the antiobesity agent tetrahydrolipstatin (orlistat).166... [Pg.252]


See other pages where Homoallylic synthesis is mentioned: [Pg.45]    [Pg.311]    [Pg.265]    [Pg.305]    [Pg.317]    [Pg.950]    [Pg.137]    [Pg.26]    [Pg.305]    [Pg.950]    [Pg.38]    [Pg.1231]    [Pg.247]    [Pg.249]   
See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Homoallyl

Homoallylation

Homoallylic

© 2024 chempedia.info