Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hill-Wheeler equation

This condition leads to the Hill-Wheeler equation... [Pg.45]

In this case, the Hill-Wheeler equations in the fermion and boson spaces are equivalent and lead to identical eigenvalues. [Pg.45]

The generator coordinate method (GCM), as initially formulated in nuclear physics, is briefly described. Emphasis is then given to mathematical aspects and applications to atomic systems. The hydrogen atom Schrodinger equation with a Gaussian trial function is used as a model for former and new analytical, formal and numerical derivations. The discretization technique for the solution of the Hill-Wheeler equation is presented and the generator coordinate Hartree-Fock method and its applications for atoms, molecules, natural orbitals and universal basis sets are reviewed. A connection between the GCM and density functional theory is commented and some initial applications are presented. [Pg.315]

Wheeler and collaborators [3], in the context of nuclear physics, showed at that time that the limit in the variational procedure potential itself was not reached. Indeed, the Rayleigh-Ritz (RR) variational scheme teaches us how to obtain the best value for a parameter in a trial function, i.e., exponents of Slater (STO) or Gaussian (GTO) type orbital, Roothaan or linear combination of atomic orbitals (LCAO) expansion coefficients and Cl coefficients. Instead, the generator coordinate method (GCM) introduces the Hill-Wheeler (HW) equation, an integral transform algorithm capable, in principle, to find the best functional form for a given trial function. We present the GCM and the HW equation in Section 2. [Pg.317]

It has been pointed out above that the Wheeler-Ono approach (see Sec. III.l) to the idealized mathematically plane surface problem is the rigorous approach, though actual numerical calculations based on the general equations are not practical. On the other hand, the Frenkel-Halsey-Hill method (see Sec. III.4) is essentially a very approximate solution of this same problem resulting in a simple and surprisingly successful isotherm equation, Eq. (38), for 0 not too small. This method can be applied to capillary condensation (see Sec. III.5) and is capable of accounting for isotherm types II to V (1,55,75). [Pg.240]


See other pages where Hill-Wheeler equation is mentioned: [Pg.674]    [Pg.274]   
See also in sourсe #XX -- [ Pg.315 , Pg.317 ]




SEARCH



Hill equation

Hill equation equations

Hills

© 2024 chempedia.info