Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-Volume Organic Chemicals

All organic chemicals are, by definition, based on chemicals derived from living matter. Thus, the ten highest-volume commercial organic chemicals are all made from starting materials obtained from petroleum (oil) and natural gas, which are believed to have been formed by the microbial decomposition of ancient marine plants and animals. [Pg.117]


All of the above high-volume organic chemicals are obtained from petroleum or natural gas. This is why the modern organic chemical industry is frequently referred to as the petrochemical industry. The high-volume status of some of these compounds is due to their use to make others lower on the list. For example, ethylene is used to make ethylene dichloride, which, in turn, is used to make vinyl chloride. Ethyl benzene, made from benzene and ethylene, is used to make styrene. Methyl r-butyl ether is made from methanol and butylene, a captive intermediate for which production data is not available. [Pg.119]

Adipic acid is a very large volume organic chemical. Worldwide production in 1986 reached 1.6 x 10 t (3.5 x 10 lb) (158) and in 1989 was estimated at more than 1.9 x 10 t (Table 7). It is one of the top fifty (159) chemicals produced in the United States in terms of volume, with 1989 production estimated at 745,000 t (160). Growth rate in demand in the United States for the period 1988—1993 is estimated at 2.5% per year based on 1987—1989 (160). Table 7 provides individual capacities for U.S. manufacturers. Western European capacity is essentially equivalent to that in the United States at 800,000 t/yr. Demand is highly cycHc (161), reflecting the automotive and housing markets especially. Prices usually foUow the variabiUty in cmde oil prices. Adipic acid for nylon takes about 60% of U.S. cyclohexane production the remainder goes to caprolactam for nylon-6, export, and miscellaneous uses (162). In 1989 about 88% of U.S. adipic acid production was used in nylon-6,6 (77% fiber and 11% resin), 3% in polyurethanes, 2.5% in plasticizers, 2.7% miscellaneous, and 4.5% exported (160). [Pg.245]

It appears that the ultimate replacements for the high volume chlorofluorocarbon products are to be more highly fluorinated organic chemicals, thus requiring significantly higher volumes of HF in thek manufacture. [Pg.199]

It is a misconception that most chemicals are manufactured in organic solvents. Most high-volume bulk chemicals are actually produced in solvent-free processes, or at least ones in which one of the reactants also acts as a solvent. Typical examples of such large-scale processes include the manufacture of benzene, methanol, MTBE, phenol and polypropylene. In addition, some heterogeneous gas-phase catalytic reactions, a class of solvent-free processes, are discussed in Chapter 4. [Pg.132]

Adipic acid is a very large-volume organic chemical. It is one of the top 50 chemicals produced in the United States in terms of volume. Demand is highly cyclic, reflecting the automotive and housing markets especially. Prices usually follow the variability in crude oil prices. Adipic acid for nylon takes about 60% of U.S. cyclohexane production the remainder goes to caprolactam for nylon-6, export, and miscellaneous uses. [Pg.35]


See other pages where High-Volume Organic Chemicals is mentioned: [Pg.117]    [Pg.118]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.148]    [Pg.292]    [Pg.59]    [Pg.5]    [Pg.97]    [Pg.117]    [Pg.118]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.148]    [Pg.292]    [Pg.59]    [Pg.5]    [Pg.97]    [Pg.28]    [Pg.348]    [Pg.245]    [Pg.106]    [Pg.507]    [Pg.312]    [Pg.312]    [Pg.880]    [Pg.425]    [Pg.109]    [Pg.512]    [Pg.75]    [Pg.182]    [Pg.323]    [Pg.385]    [Pg.924]    [Pg.1026]    [Pg.181]    [Pg.59]    [Pg.137]    [Pg.438]    [Pg.438]   


SEARCH



High organic

© 2024 chempedia.info