Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High gaskets

For vehicles, special attention is most often focused on the knocking potential encountered at high motor speeds in excess of 4000 rpm for which the consequences from the mechanical point of view are considerable and lead very often to mechanical failure such as broken valves or pistons, and rupture of the cylinder head gasket. Between RON and MON, it is the latter which better reflects the tendency to knock at high speeds. Conversely, RON gives the best prediction of the tendency to knock at low engine speeds of 1500 to 2500 rpm. [Pg.199]

While with-in the mobile x-ray system, the waste in the sampler, is contained within a replaceable (and disposable) polyvinyl chloride (PVC) sleeve with a wall thickness of approximately 0.2-inches and a sealed bottom. It was anticipated that the PVC tube or sleeve would, with use, become highly contaminated with waste residues which drip of fall-off the sampler. The sleeve is coated with a conductive coating to prevent static electricity buildup . There are no sources of ignition in this sealed spare. The sampler (and waste) is coupling which includes a positive pressure gasket. This barrier is further isolated by a second barrier consisting of an epoxy coated aluminum sleeve also sealed-off from the main x-ray cabinet and PVC sleeve. There are also no potential sources of ignition in this isolated secondary space as well. [Pg.611]

New metliods appear regularly. The principal challenges to the ingenuity of the spectroscopist are availability of appropriate radiation sources, absorption or distortion of the radiation by the windows and other components of the high-pressure cells, and small samples. Lasers and synchrotron radiation sources are especially valuable, and use of beryllium gaskets for diamond-anvil cells will open new applications. Impulse-stimulated Brillouin [75], coherent anti-Stokes Raman [76, 77], picosecond kinetics of shocked materials [78], visible circular and x-ray magnetic circular dicliroism [79, 80] and x-ray emission [72] are but a few recent spectroscopic developments in static and dynamic high-pressure research. [Pg.1961]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

An all aromatic polyetherimide is made by Du Pont from reaction of pyromelUtic dianhydride and 4,4 -oxydianiline and is sold as Kapton. It possesses excellent thermal stabiUty, mechanical characteristics, and electrical properties, as indicated in Table 3. The high heat-deflection temperature of the resin limits its processibiUty. Kapton is available as general-purpose film and used in appHcations such as washers and gaskets. Often the resin is not used directly rather, the more tractable polyamide acid intermediate is appHed in solution to a surface and then is thermally imidi2ed as the solvent evaporates. [Pg.333]

Butyl polymers are about 8—10 times more resistant to air permeabiUty compared to natural mbber and have excellent resistance to heat and steam or water. This accounts for its use in gaskets and diaphragms for hot water and steam service. In addition, butyl mbber can be compounded to have low residence properties and has found use in high damping mounts for engines, motors, and similar devices. Halobutyl mbbers can be blended with natural mbber, polychloroprene, and EPDM to greatiy enhance theh permeabiUty resistance. [Pg.232]

Parts made from fluoroelastomers ate used ia appHcations that justify their high cost, usually where the maintenance and replacement costs are high enough to offset the initial cost of the part. These include automotive appHcations such as valve stem seals, fuel injector components, radiator, crankcase and transmission seals, and carburetor needle tips. Numerous seals and gaskets in the marine, oilfield, and chemical processing industries employ fluoroelastomers. In addition, many hoses in the automotive and chemical industry are made entirely of fluoroelastomer compounds or have a veneer of the fluoroelastomer as a barrier exposed to the harsh environment. Seals and gaskets in military appHcations and the binder for flares and missile appHcations ate made with fluoroelastomers. [Pg.234]

Many antioxidants ia these classes are volatile to some extent at elevated temperatures and almost all antioxidants are readily extracted from their vulcanizates by the proper solvent. These disadvantages have become more pronounced as performance requirements for mbber products have been iacreased. Higher operating temperatures and the need for improved oxidation resistance under conditions of repeated extraction have accelerated the search for new techniques for polymer stabilization. Carpet backiag, seals, gaskets, and hose are some examples where high temperatures and/or solvent extraction can combine to deplete a mbber product of its antioxidant and thus lead to its oxidative deterioration faster (38,40). [Pg.247]

R. A. Mercuri, R. A. Howard, and J. J. McGl meiy, Ndranced High Temperature Test Methodsfor Gasket Materials, Automotive Eng 97, 49—52 (July 1989). [Pg.528]

Oxidized castor oils are excellent nonmigrating, nonvolatile plasticizers (qv) for ceUulosic resins, poly(vinyl butyral), polyamides, shellac, and natural and synthetic mbber (see Rubber, natural). The high viscosity products are also used as tackifiers in gasket compounds and adhesives (qv) because of good oil and solvent resistance. They also serve as excellent pigment grinding media and as a base for inks (qv), lubricating oils, and hydrauHc oils (62). [Pg.155]

The excellent properties of these fluoroelastomers come with a high price tag. Kalrez, for example, is extremely expensive ( 33—44/kg). These materials are used in automotive appHcations (seals, gaskets, fuel hose lines, engine parts, etc), where they can withstand under-hood temperatures. They are also used in equipment for oil and gas production and chemical processing. U.S. consumption in 1988 was 3100 t (76). [Pg.185]


See other pages where High gaskets is mentioned: [Pg.431]    [Pg.939]    [Pg.1958]    [Pg.89]    [Pg.90]    [Pg.140]    [Pg.495]    [Pg.499]    [Pg.353]    [Pg.217]    [Pg.73]    [Pg.93]    [Pg.94]    [Pg.459]    [Pg.73]    [Pg.497]    [Pg.54]    [Pg.274]    [Pg.142]    [Pg.293]    [Pg.220]    [Pg.494]    [Pg.376]    [Pg.535]    [Pg.289]    [Pg.527]    [Pg.562]    [Pg.562]    [Pg.577]    [Pg.499]    [Pg.500]    [Pg.516]    [Pg.226]    [Pg.778]    [Pg.790]    [Pg.954]    [Pg.960]    [Pg.1077]    [Pg.1127]    [Pg.1215]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Gasket

Gasketing

© 2024 chempedia.info