Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclear single quantum spectroscopy

Conformations of mycothiol bimane (MSmB) were studied by H and 13C NMR using rotational nuclear Overhauser effect spectroscopy (ROESY) and heteronuclear single quantum correlation (HSQC) methods with expansions of the anomeric region <2003JOC3380>. NMR characterization of iV-acetyl-L-(Y)-cysteinyl monobimane and peracetylated MSmB was also published (Section 12.10.15.4) <2002JA3492>. [Pg.374]

No general studies have been carried out for these compounds, but there are several reports in which the stereochemistry of the final product has been elucidated by NOESY, correlation spectroscopy (COSY), or heteronuclear single quantum correlation (HSQC) experiments. For example, intensive NOESY experiments were used to establish the exact nature of each of the three cycloadducts 151a-c generated by the cycloaddition of a substituted nitrone to dimethyl (Z)-diethylenedicarboxylate <2000EJ03633>. [Pg.64]

HSQC HMQC Heteronuclear single-quantum/multiple-quantum correlation spectroscopy To elucidate structure of organic molecules To determine heteronuclear coupling connectivity... [Pg.308]

Fig. 8. Heteronuclear single-quantum coherenc (HSQC) spectrum of the hypothetical protein of the flowering locus T protein produced in the cell-free system. The FT protein was synthesized in the same way as in Fig. 6 except that Ala, Leu, Gly, and Gin in both translation and substrate mixture were replaced with their -labeled forms (Isotec, Inc ). After incubation for 48 h, the reaction mixture (1 mL) was dialyzed against 10 mMphosphate buffer (pH 6.5) overnight, and then centrifuged at 30,000g for 10 min. The supernatant containing 30 xMof the protein was directly subjected to nuclear magnetic resonance spectroscopy. The spectrum was recorded on a Broker DMX-500 spectrometer at 25°C, and 2048 scans were averaged for the final H- WHSQC spectrum. Fig. 8. Heteronuclear single-quantum coherenc (HSQC) spectrum of the hypothetical protein of the flowering locus T protein produced in the cell-free system. The FT protein was synthesized in the same way as in Fig. 6 except that Ala, Leu, Gly, and Gin in both translation and substrate mixture were replaced with their -labeled forms (Isotec, Inc ). After incubation for 48 h, the reaction mixture (1 mL) was dialyzed against 10 mMphosphate buffer (pH 6.5) overnight, and then centrifuged at 30,000g for 10 min. The supernatant containing 30 xMof the protein was directly subjected to nuclear magnetic resonance spectroscopy. The spectrum was recorded on a Broker DMX-500 spectrometer at 25°C, and 2048 scans were averaged for the final H- WHSQC spectrum.
Other strategies that show great promise in reducing NMR acquisition time utilise methods to obtain multiple sets of data from one experiment through a concept known as time-shared evolution. An example of this process that should find utility in natural products elucidation was demonstrated by a pulse sequence called CN-HMBC.93 Traditionally, a separate 13C-HMBC and 15N-HMBC were acquired independently. However, the CN-HMBC allows both 13C- and 15N-HMBC spectra to be obtained simultaneously. By acquiring both data sets simultaneously, an effective 50% time reduction can be achieved.93 This approach has also been demonstrated for a sensitivity-enhanced 2D HSQC-TOCSY (heteronuclear multiple bond correlation total correlation spectroscopy) and HSQMBC (heteronuclear single quantum... [Pg.288]

Heteronuclear multiple-quantum correlation Experiment for tailored correlation spectroscopy of H and H resonances in peptides and proteins Homonuclear Hartmann-Hahn spectroscopy Heteronuclear quadruple-quantum coherence Heteronuelear triple-quantum coherence Heteronuclear single-quantum coherence TOCSY sequences developed at the Indian Institute of Chemical Technology Insensitive nucleus enhancement by polarization transfer... [Pg.240]

A simple way of illustrating multidimensional NMR is through reference to hetero-nuclear correlation spectroscopy, in which two or more separate frequency dimensions are correlated with one another. For example, a particularly valuable 2D experiment is heteronuclear single quantum correlation (HSQC) spectroscopy, in which the resultant spectrum has two frequency axes, corresponding to and frequency dimensions, and one intensity axis. Analogous HSQC... [Pg.512]

Traditionally, homonuclear 2D double quantum filtered correlation spectroscopy (DQF-COSY) and total correlated spectroscopy (TOCSY) spectra are valuable in the identification of resonances of individual monosaccharide units. In the presence of small couplings, through space connectivities detected by NOESY/ROESY (nuclear Overhauser effect spectroscopy/ rotational nuclear Overhauser effect spectroscopy) experiments are also useful in completing the resonance assignment. When the H NMR spectra of complex oligosaccharides are too crowded to fully elucidate the structure by homonuclear correlation methods, it is efficient to use 2D heteronuclear correlation methods, such as heteronuclear single quantum correlation... [Pg.198]


See other pages where Heteronuclear single quantum spectroscopy is mentioned: [Pg.208]    [Pg.208]    [Pg.66]    [Pg.182]    [Pg.39]    [Pg.602]    [Pg.10]    [Pg.180]    [Pg.181]    [Pg.248]    [Pg.341]    [Pg.428]    [Pg.340]    [Pg.290]    [Pg.9]    [Pg.52]    [Pg.6227]    [Pg.903]    [Pg.29]    [Pg.18]    [Pg.600]    [Pg.190]    [Pg.150]    [Pg.287]    [Pg.62]    [Pg.257]    [Pg.6226]    [Pg.64]    [Pg.466]    [Pg.33]    [Pg.38]    [Pg.8]    [Pg.712]    [Pg.99]    [Pg.435]    [Pg.437]   


SEARCH



Heteronuclear single quantum

Heteronuclear single quantum coherence spectroscopy

Heteronuclear single quantum correlation spectroscopy

Heteronuclear single-quantum coherence HSQC) spectroscopy

Heteronuclear single-quantum spectroscopy HSQC)

Single-quantum

Total correlated spectroscopy heteronuclear single quantum

© 2024 chempedia.info