Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclear multiple quantum

A H(detected)- C shift correlation spectrum (conmion acronym HMQC, for heteronuclear multiple quantum coherence, but sometimes also called COSY) is a rapid way to assign peaks from protonated carbons, once the hydrogen peaks are identified. With changes in pulse timings, this can also become the HMBC (l eteronuclear multiple bond coimectivity) experiment, where the correlations are made via the... [Pg.1461]

An alternative way of acquiring the data is to observe the signal. These experiments are referred to as reverse- or inverse-detected experiments, in particular the inverse HETCOR experiment is referred to as a heteronuclear multiple quantum coherence (HMQC) spectmm. The ampHtude of the H nuclei is modulated by the coupled frequencies of the C nuclei in the evolution time. The principal difficulty with this experiment is that the C nuclei must be decoupled from the H spectmm. Techniques used to do this are called GARP and WALTZ sequences. The information is the same as that of the standard HETCOR except that the F and F axes have been switched. The obvious advantage to this experiment is the significant increase in sensitivity that occurs by observing H rather than C. [Pg.407]

HC HMQC (heteronuclear multiple quantum coherence) and HC HSQC (heteronuclear single quantum coherence) are the acronyms of the pulse sequences used for inverse carbon-proton shift correlations. These sensitive inverse experiments detect one-bond carbon-proton connectivities within some minutes instead of some hours as required for CH COSY as demonstrated by an HC HSQC experiment with a-pinene in Fig. 2.15. [Pg.36]

HMQC Heteronuclear multiple quantum coherence, e.g. inverse CH correlation via one-bond carbon proton-coupling, same format and information as described for ( C detected) CH COSY but much more sensitive (therefore less time-consuming) because of H detection... [Pg.266]

H-Detected Heteronuclear Multiple-Quantum Coherence (HMQC) Spectra... [Pg.271]

The heteronuclear multiple-quantum coherence (HMQC) spectrum, H-NMR chemical shift assignments, and C-NMR data of podophyllo-toxin are shown. Determine the chemical shifts of various carbons and connected protons. The HMQC spectra provide information about the one-bond correlations of protons and attached carbons. These spectra are fairly straightforward to interpret The correlations are made by noting the position of each crossf)eak and identifying the corresponding 8h and 8c values. Based on this technique, interpret the following spectrum. [Pg.292]

C-NMR, COSY, HMQC (heteronuclear multiple quantum coherence), and HMBC (heteronuclear multiple bond correlation).48 Furthermore, the structure of trimer was confirmed by X-ray crystallography.48 The incorporation of 13C into the indole 3a position proved valuable in these structural determinations and in documenting the ene-imine intermediate. For example, the presence of a trimer was readily determined from its 13C-NMR spectrum (Fig. 7.7). [Pg.229]

HMQC-TOCSY Heteronuclear multiple quantum coherence-total correlation IAA Instrumental activation analysis... [Pg.755]

To be fair, we must point out that this type of experiment is extremely sensitive to the parameters chosen. Various pulse sequences are available, including the original COLOC (Correlation by means of Long range Coupling) as well as experiments variously referred to as HMBC (Heteronuclear Multiple-Bond Correlation) and HMQC (Heteronuclear Multiple-Quantum Correlation). Depending on the parameters chosen, it is often not possible to suppress correlations due to one-bond coupling ... [Pg.45]

During the delay A, the proton coherence associated with long-range heteronuclear couplings is fully converted into anti-phase (AP) magnetization. The second 90° pulse applied on the 13C channel converts this AP magnetization into heteronuclear multiple quantum coherences (2HxCy). [Pg.297]

The last 90° pulse applied on the 13C channel is aimed to convert the heteronuclear multiple quantum magnetization into observable proton AP magnetization. [Pg.298]

J splittings cannot be directly resolved. In addition to the obvious advantage of providing a map of chemical bonds between the spins, /-based transfers do not require spin-locking and are not disturbed by molecular motions. The major drawback of polarization transfer through J coupling is that the delays involved in the pulse sequences, such as insensitive nuclei enhanced by polarization transfer (INEPT) [233] or heteronuclear multiple-quantum coherence (HMQC)... [Pg.171]

A variety of examples of 2D-NMR experiments is provided in reference [21]. The structure elucidation of the di-rhodium compound shown in Figure 11.3 was mostly carried out in this way. For example, 2D 11 l-31P heteronuclear multiple quantum correlation (HMQC) experiments were used to show that two rhodium-coupled hydride resonances are connected to a single type of 31P nucleus. [Pg.302]

The first of the proton-detected experiments is the Heteronuclear Multiple Quantum Correlation HMQC experiment of Bax, Griffey and Hawkins reported in 1983, which was first demonstrated using 1H-15N heteronuclear shift correlation [42]. The version that has come into wide-spread usage, particularly among the natural products community, is that of Bax and Subramanian reported in 1986 [43]. A more contemporary gradient-enhanced version of the experiment is shown in Fig. 10.14 [44],... [Pg.292]

Fig. 10.14. Gradient-enhanced HMQC pulse sequence described in 1991 by Hurd and John derived from the earlier non-gradient experiment of Bax and Subramanian. For 1H-13C heteronuclear shift correlation, the gradient ratio, G1 G2 G3 should be 2 2 1 or a comparable ratio. The pulses sequence creates heteronuclear multiple quantum of orders zero and two with the application of the 90° 13C pulse. The multiple quantum coherence evolves during the first half of ti. The 180° proton pulse midway through the evolution period decouples proton chemical shift evolution and interchanges the zero and double quantum coherence terms. Antiphase proton magnetization is created by the second 90° 13C pulse that is refocused during the interval A prior to detection and the application of broadband X-decoupling. Fig. 10.14. Gradient-enhanced HMQC pulse sequence described in 1991 by Hurd and John derived from the earlier non-gradient experiment of Bax and Subramanian. For 1H-13C heteronuclear shift correlation, the gradient ratio, G1 G2 G3 should be 2 2 1 or a comparable ratio. The pulses sequence creates heteronuclear multiple quantum of orders zero and two with the application of the 90° 13C pulse. The multiple quantum coherence evolves during the first half of ti. The 180° proton pulse midway through the evolution period decouples proton chemical shift evolution and interchanges the zero and double quantum coherence terms. Antiphase proton magnetization is created by the second 90° 13C pulse that is refocused during the interval A prior to detection and the application of broadband X-decoupling.
In addition to well-resolved one-dimensional (ID) 1H and 13C spectra, which are usually sufficient for monitoring synthetic steps, HR-MAS techniques can be applied to two-dimensional (2D) homonuclear and heteronuclear experiments, which allow a wealth of structural information to be obtained. H,13C HMQC (heteronuclear multiple quantum coherence) spectra are particularly useful in the analysis of solid support-bound oligosaccharides, since the anomeric protons exhibit characteristic resonances. Such a spectrum of a polymer-bound trisaccharide glycal is shown in Figure 8.4. [Pg.170]

This scheme is applied in the so-called X-half-filter technique (Fig. 17.4a, c), with the only difference of an additional 90 (X) pulse with constant phase [16, 17]. Instead of generating heteronuclear multiple quantum coherence 2 Iy Sy, which cannot readily be detected (in case of selecting the 1H-X pairs), one now always ends up with proton antiphase coherence, but with the same phase alternation ... [Pg.381]


See other pages where Heteronuclear multiple quantum is mentioned: [Pg.259]    [Pg.271]    [Pg.212]    [Pg.207]    [Pg.221]    [Pg.177]    [Pg.338]    [Pg.697]    [Pg.299]    [Pg.8]    [Pg.118]    [Pg.983]    [Pg.323]    [Pg.64]    [Pg.310]    [Pg.503]    [Pg.97]    [Pg.255]    [Pg.126]    [Pg.363]    [Pg.465]   


SEARCH



Dipolar heteronuclear multiple-quantum

Dipolar heteronuclear multiple-quantum coherence technique

Gradient heteronuclear multiple quantum

Gradient heteronuclear multiple quantum coherence

Gradient heteronuclear multiple quantum correlation

H-Detected Heteronuclear Multiple-Quantum Coherence (HMQC) Spectra

HMQC (Heteronuclear multiple-quantum

Heteronuclear correlation multiple quantum coherence

Heteronuclear correlation through multiple quantum

Heteronuclear correlation through multiple quantum coherence

Heteronuclear multiple quantum coherence HMQC)

Heteronuclear multiple quantum coherence-total correlation

Heteronuclear multiple quantum correlation

Heteronuclear multiple quantum correlation HMQC)

Heteronuclear multiple quantum correlation examples

Heteronuclear multiple quantum correlation pulse sequence

Heteronuclear multiple quantum spectroscopy

Heteronuclear multiple-bond quantum

Heteronuclear multiple-bond quantum coherence

Heteronuclear multiple-quantum coherence

Heteronuclear multiple-quantum coherence HMQC) spectroscopy

Heteronuclear multiple-quantum correlation combination experiments

Heteronuclear multiple-quantum pulse sequence

Heteronuclear multiple-quantum sensitivity

Heteronuclear multiple-quantum structure elucidation

Heteronuclear single quantum multiple

Heteronuclear single quantum multiple bond correlation

Inverse detection heteronuclear multiple quantum

Inverse detection heteronuclear multiple quantum coherence

Multiple heteronuclear

Solid-state heteronuclear multiple-quantum

Solid-state heteronuclear multiple-quantum correlation experiment

© 2024 chempedia.info