Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helium applications

The representation of trial fiinctions as linear combinations of fixed basis fiinctions is perhaps the most connnon approach used in variational calculations optimization of the coefficients is often said to be an application of tire linear variational principle. Altliough some very accurate work on small atoms (notably helium and lithium) has been based on complicated trial functions with several nonlinear parameters, attempts to extend tliese calculations to larger atoms and molecules quickly runs into fonnidable difficulties (not the least of which is how to choose the fomi of the trial fiinction). Basis set expansions like that given by equation (A1.1.113) are much simpler to design, and the procedures required to obtain the coefficients that minimize are all easily carried out by computers. [Pg.38]

Liquid helium s use in magnetic resonance imaging (MRI) continues to increase as the medical profession accepts and develops new uses for the equipment. This equipment has eliminated some need for exploratory surgery by accurately diagnosing patients. Another medical application uses MRE to determine (by blood analysis) whether a patient has any form of cancer. [Pg.8]

Cathodoluminescence microscopy and spectroscopy techniques are powerful tools for analyzing the spatial uniformity of stresses in mismatched heterostructures, such as GaAs/Si and GaAs/InP. The stresses in such systems are due to the difference in thermal expansion coefficients between the epitaxial layer and the substrate. The presence of stress in the epitaxial layer leads to the modification of the band structure, and thus affects its electronic properties it also can cause the migration of dislocations, which may lead to the degradation of optoelectronic devices based on such mismatched heterostructures. This application employs low-temperature (preferably liquid-helium) CL microscopy and spectroscopy in conjunction with the known behavior of the optical transitions in the presence of stress to analyze the spatial uniformity of stress in GaAs epitaxial layers. This analysis can reveal,... [Pg.156]

Gas plasma treatment operates at low pressure and relatively low temperature. While the corona treatment is applicable to substrates in sheet or film form, the gas plasma process can treat objects of virtually any shape. The gases most widely used to generate plasma by free-radical reactions include air, argon, helium, nitrogen, and oxygen. All these, with the exception of oxygen. [Pg.527]

Mainly for considerations of space, it has seemed desirable to limit the framework of the present review to the standard methods for treating correlation effects, namely the method of superposition of configurations, the method with correlated wave functions containing rij and the method using different orbitals for different spins. Historically these methods were developed together as different branches of the same tree, and, as useful tools for actual applications, they can all be traced back to the pioneering work of Hylleraas carried out in 1928-30 in connection with his study of the ground state of the helium atom. [Pg.211]

For atoms with more than two electrons, it is very difficult to obtain such a small absolute error in the energy as in the helium case, but, within an isoelectronic sequence, the relative error will, of course, go down rapidly with increasing atomic number Z. The method of superposition of configurations has been used successfully in a number of applications, particularly by Boys (1950-) and Jucys (1947-), and, for a more detailed survey of the work on atoms, we will refer to the special table on atomic calculations in the bibliography. This is a field of rapid development, where one can expect important new results within the next few years. [Pg.296]

So far, no exact application of this extended HF scheme has been carried out, but, by using the helium atom as a typical example, one can get an idea of the possibilities and limitations of this ap-... [Pg.309]

Helium is an interesting example of the application of the Third Law. At low temperatures, normal liquid helium converts to a superfluid with zero viscosity. This superfluid persists to 0 Kelvin without solidifying. Figure 4.12 shows how the entropy of He changes with temperature. The conversion from normal to superfluid occurs at what is known as the A transition temperature. Figure 4.12 indicates that at 0 Kelvin, superfluid He with zero viscosity has zero entropy, a condition that is hard to imagine.v... [Pg.178]

Checking the absence of internal mass transfer limitations is a more difficult task. A procedure that can be applied in the case of catalyst electrode films is the measurement of the open circuit potential of the catalyst relative to a reference electrode under fixed gas phase atmosphere (e.g. oxygen in helium) and for different thickness of the catalyst film. Changing of the catalyst potential above a certain thickness of the catalyst film implies the onset of the appearance of internal mass transfer limitations. Such checking procedures applied in previous electrochemical promotion studies allow one to safely assume that porous catalyst films (porosity above 20-30%) with thickness not exceeding 10pm are not expected to exhibit internal mass transfer limitations. The absence of internal mass transfer limitations can also be checked by application of the Weisz-Prater criterion (see, for example ref. 33), provided that one has reliable values for the diffusion coefficient within the catalyst film. [Pg.554]

No extensive comparison with experiment to test the values in Table IV will be made. The close agreement between the purely theoretical and the experimental results in the case of helium and neon allows one to place confidence in the R values for ions with these structures and the same remark applies with less force in the case of the argon structure, where only a small empirical correction was introduced. It is interesting to note that the theoretical values 3-57 and 6-15 for the rubidium and the caesium ion agree very well with the experimental ones, 3-56 and 6-17 (Table III), which were not used at all in the evaluation of the empirical corrections for these structures. Finally, we may mention that our values agree in general with those of Fajans and WulfE.i obtained by them from the experimental R values for salt solutions by the application of only the simplest theoretical considerations. [Pg.696]

There are practical applications of Features 2 and 3. Balloons inflated with helium rise in the atmosphere because the molar mass of helium is substantially lower than that of air. Consequently, the density of a helium-fdled balloon is less than the density of air, and the balloon rises, just as a cork released underwater rises to the surface. Hot-air balloons exploit Feature 3. When the air beneath a hot-air balloon is heated, its density decreases, becoming smaller than the density of the outside air. With sufficient heating, the balloon rises and floats over the landscape. In contrast, cold air is less dense than warm air, so cold air sinks. For this reason, valleys often are colder than the surrounding hillsides during winter. [Pg.305]

The two preceding applications showed that our hydrogenic model fits well with the helium atom and the dihydrogen molecule for the determination of the polarization functions except that their exponent ( is different from Co which is the exponent of the genuine basis set It is obvious that the hydrogenic model will fit less and... [Pg.276]

An important accessory in many applications of Mossbauer spectroscopy is a cryostat for low temperature and temperature-dependent measurements. This may be necessary to keep samples frozen or to overcome small Debye-Waller factors of the absorbers at room temperature in the case of an isotope with high y-energy. Paramagnetic samples are measured at liquid-helium temperatures to slow down... [Pg.41]

Figure 3.9 shows a schematic sectional drawing of a liquid-helium Mbssbauer cryostat with a superconducting magnet optionally included. The layout is kept generic to highlight a few issues that are essential for applications in transition metal chemistry ... [Pg.42]

The helium atom serves as a simple example for the application of this construction. If the nucleus (for which Z = 2) is considered to be fixed in space, the Hamiltonian operator H for the two electrons is... [Pg.224]

In the application of quantum mechanics to the helium atom, the following integral / arises and needs to he evaluated... [Pg.341]


See other pages where Helium applications is mentioned: [Pg.113]    [Pg.139]    [Pg.113]    [Pg.139]    [Pg.1689]    [Pg.1839]    [Pg.8]    [Pg.26]    [Pg.15]    [Pg.1326]    [Pg.1801]    [Pg.36]    [Pg.154]    [Pg.282]    [Pg.490]    [Pg.503]    [Pg.258]    [Pg.6]    [Pg.98]    [Pg.152]    [Pg.21]    [Pg.9]    [Pg.23]    [Pg.24]    [Pg.29]    [Pg.3]    [Pg.131]    [Pg.128]    [Pg.258]    [Pg.148]    [Pg.109]    [Pg.53]   
See also in sourсe #XX -- [ Pg.44 ]

See also in sourсe #XX -- [ Pg.579 , Pg.580 ]




SEARCH



Helium Leak Detection in Industrial Rough Vacuum Applications without Need of a Mass Spectrometer

Helium atom perturbation method application

Helium atom variation method application

Helium tracer applications

Perturbation method helium ground state application

Variation method helium application

© 2024 chempedia.info