Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helical head

One would have to exercise care in any side-by-side comparative study of the two roof designs to ensure that the only significant difference between the flat head and helical head designs is the roof itself. This would require that ... [Pg.367]

Fig. II, 17, 2 illustrates a fractional distillation unit f for use with glass helices. The column is provided with an electrically-heated jacket the resistance shown in the Figure may be replaced by a variable transformer. The still head is of the total-condensation variable take-off type aU the vapour at the top of the column is condensed, a portion of the condensate is returned to the column by means of the special stopcock (permitting of... Fig. II, 17, 2 illustrates a fractional distillation unit f for use with glass helices. The column is provided with an electrically-heated jacket the resistance shown in the Figure may be replaced by a variable transformer. The still head is of the total-condensation variable take-off type aU the vapour at the top of the column is condensed, a portion of the condensate is returned to the column by means of the special stopcock (permitting of...
Figure S.21 The hemaggiutinin moiecuie is formed from three subunits. Each of these subunits Is anchored In the membrane of the influenza vims. The globular heads contain the receptor sites that bind to sialic acid residues on the surface of eukaryotic cells. A major part of the subunit interface is formed by the three long intertwining helices, one from each subunit. (Adapted from I. Wilson et al.. Nature 289 366-373, 1981.)... Figure S.21 The hemaggiutinin moiecuie is formed from three subunits. Each of these subunits Is anchored In the membrane of the influenza vims. The globular heads contain the receptor sites that bind to sialic acid residues on the surface of eukaryotic cells. A major part of the subunit interface is formed by the three long intertwining helices, one from each subunit. (Adapted from I. Wilson et al.. Nature 289 366-373, 1981.)...
The helices at the N-terminal regions of the two polypeptide chains are intertwined and make extensive contacts in the central part of the molecule to form a stable core. This core supports two "heads", each comprising the last three helices from one polypeptide chain. Alpha helix 3 in the middle of the subunit chain is quite long and forms the main link between the core and the head. [Pg.142]

Figure 8.19 The a helices of the N-terminal region of the trp repressor are involved in subunit interactions and form a stable core in the middle of the dimer. Alpha helices 4-6, which include the helix-turn-helix motif, form two "head" regions at the two ends of the molecule. Alpha helix 3 connects the core to the head in both subunits. (Adapted from R.W. Schevitz et al., Nature 317 782-786, 1985.)... Figure 8.19 The a helices of the N-terminal region of the trp repressor are involved in subunit interactions and form a stable core in the middle of the dimer. Alpha helices 4-6, which include the helix-turn-helix motif, form two "head" regions at the two ends of the molecule. Alpha helix 3 connects the core to the head in both subunits. (Adapted from R.W. Schevitz et al., Nature 317 782-786, 1985.)...
The positions of the DNA recognition helices (5) and the helices (3) that connect the core with the heads are indicated. The approximate position of the side chain of residue 77 is marked as a purple hall (see text for the significance of this residue). (Adapted from R.-G. Zhang et al.. Nature 327 591-597, 1987.)... [Pg.143]

The individual domains of the two receptors both have structures similar to that of the glucocorticoid receptor, and they bind to DNA in a similar way, with their recognition helices in the major groove. The dimer contacts are, however, totally different. In the glucocorticoid receptor, which binds to a palindromic DNA sequence like the 434 repressor described in Chapter 8, the domains interact symmetrically in a head-to-head fashion equivalent... [Pg.185]

Academic des Sciences, 224 Accelerometers, 349 Accumulators, 317 Acoustic Velocity, 26, 39 Adiabatic, 30 Adiabatic efficiency dry, helical, 101 sliding vane, 126 Adiabatic exponent for air-vapor mixtures, 494 Adiabatic head, 32 Adiabatic head... [Pg.543]

Head coefficient, 156 Head equation, adiabatic, 3 t Head equation, poly tropic, I Head, centrifugal, 156 Head, reciprocating, 58 Heat run test (dry), 413 Helical compressor, 5, 7 adiabatic efficiency, Itil applicalion mnge, 7. ly asymmetric profile, 96 bearings, 116 capacity control, 95 casings, 114 circular profile, 95 cooling, I i 1 discharge temperature (dry), I 17... [Pg.546]

FIGURE 10.41 (a) Gramicidin forms a double helix in organic solvents a helical dimer is the preferred strnctnre in lipid bilayers. The strnctnre is a head-to-head, left-handed helix, with the carboxy-termini of the two monomers at the ends of the strnctnre. (b) The hydrogen-bonding pattern resembles that of a parallel /3-sheet. [Pg.324]

A. Side view of channel spanning the lipid layer of a planar lipid bilayer, The structure is comprised of two monomers, each in a left-handed, single stranded p -helical conformation, and joined together at the head or formyl end by means of six, intermolecular hydrogen bonds. The two formyl protons are seen at the center of the structure in this view. Replacement of these protons by methyls destabilizes the conducting dimer as shown with N-acetyl desformyl Gramicidin A (Fig. 3D). [Pg.185]

Fig. 4.1.13 A ribbon representation of the crystal structure of recombinant acquorin molecule showing the secondary structure elements in the protein. Alpha-helices are denoted in cyan, beta-sheet in yellow, loops in magenta coelenterazine (yellow) and the side chain of tyrosine 184 are shown as stick representations. From Head et al., 2000, with permission from Macmillan Publishers. Fig. 4.1.13 A ribbon representation of the crystal structure of recombinant acquorin molecule showing the secondary structure elements in the protein. Alpha-helices are denoted in cyan, beta-sheet in yellow, loops in magenta coelenterazine (yellow) and the side chain of tyrosine 184 are shown as stick representations. From Head et al., 2000, with permission from Macmillan Publishers.
A 60-cm. x 1-cm. externally heated column packed with 4-mm. glass helices and equipped with a total-reflux variable take-off head was used. [Pg.88]


See other pages where Helical head is mentioned: [Pg.137]    [Pg.297]    [Pg.137]    [Pg.297]    [Pg.101]    [Pg.352]    [Pg.914]    [Pg.91]    [Pg.95]    [Pg.360]    [Pg.79]    [Pg.80]    [Pg.142]    [Pg.143]    [Pg.246]    [Pg.279]    [Pg.294]    [Pg.297]    [Pg.310]    [Pg.437]    [Pg.5]    [Pg.177]    [Pg.324]    [Pg.543]    [Pg.544]    [Pg.544]    [Pg.545]    [Pg.696]    [Pg.186]    [Pg.198]    [Pg.203]    [Pg.329]    [Pg.656]    [Pg.795]    [Pg.1087]    [Pg.60]    [Pg.62]    [Pg.160]    [Pg.160]   


SEARCH



© 2024 chempedia.info