Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat exchangers turbulence

Air control louvers or dampers, popular in the past for air flow control, are used primarily for only very low scale air flow control. Louvers are used in many winterized heat exchangers in extremely low ambient temperature locations to retain and recirculate warm air in completely enclosed heat exchangers, sometimes in very compHcated control schemes. The use of louvers on the discharge side of a fan to control air flow is inefficient and creates mechanical problems in the louvers because of the turbulence. A fan is a constant volume device, thus use of louvers to control flow is equivalent to... [Pg.111]

Friction Coefficient. In the design of a heat exchanger, the pumping requirement is an important consideration. For a fully developed laminar flow, the pressure drop inside a tube is inversely proportional to the fourth power of the inside tube diameter. For a turbulent flow, the pressure drop is inversely proportional to D where n Hes between 4.8 and 5. In general, the internal tube diameter, plays the most important role in the deterrnination of the pumping requirement. It can be calculated using the Darcy friction coefficient,, defined as... [Pg.483]

This term is a measure of the unit s length. Sometimes it is referred to as the number of transfer units. This simply says that the optimum pressure drop increases as the heat exchanger gets longer, ie, has more transfer units. The forms of F, and F both foUow from the fact that in turbulent flow the... [Pg.89]

Shells, clams, wood fragments, and other biological materials can also produce concentration cell corrosion. Additionally, fragments can lodge in heat exchanger inlets, locally increasing turbulence and erosion-corrosion. If deposits are massive, turbulence, air separation, and associated erosion-corrosion can occur downstream (see Case History 11.5). [Pg.126]

Favored locations for erosion-corrosion are areas exposed to high-flow velocities or turbulence. Tees, bends, elbows (Fig. 11.5), pumps, valves (Fig. 11.6), and inlet and outlet tube ends of heat exchangers (Fig. 11.7) can be affected. Turbulence may be created downstream of crevices, ledges (Fig. 11.8), abrupt cross-section changes, deposits, corrosion products, and other obstructions that change laminar flow to turbulent flow. [Pg.242]

Damage will be confined to the bubble-collapse region, usually immediately downstream of the low-pressure zone. Components exposed to high velocity or turbulent flow, such as pump impellers and valves, are subject. The suction side of pumps (Case History 12.3) and the discharge side of regulating valves (Fig. 12.6 and Case History 12.4) are frequently affected. Tube ends, tube sheets, and shell outlets in heat exchanger equipment have been affected, as have cylinder liners in diesel engines (Case History 12.1). [Pg.275]

Some processes have large heat transfer requirements. This may result in large inventories of material within the heat transfer equipment. If the material is thermally unstable it would be inherently safer to reduce the residence time in the heat exchanger. Options to minimize heat exchanger inventory include the use of different types of heat exchangers. Inventories in shell and tube heat exchangers can be reduced by the use of turbulators in the tubes to enhance heat transfer coefficients, and by placing the more hazardous material on the tube side. [Pg.71]

What may be turbulent flow in the heat exchanger for water will reduce to transitional or laminar flow for the heat transfer fluid, reducing the coefficient of heat transfer to a value 70% or more of that for water. [Pg.171]

From Tolmin s theory and experimental data (e.g., Reichardtthe relationship between velocity profile and temperature profile in the jet cross-section can be expressed using an overall turbulent Prandtl number Pr = v /a, where Vf is a turbulent momentum exchange coefficient and a, is a turbulent heat exchange coefficient ... [Pg.457]

The mechanism of turbulent heat exchange between tbe upper and lower zones in the case of ventilation system design with temperature stratification is described in Section 7.3. [Pg.593]

Figure 2-43. Evaluation curves for friction losses of air and steam flowing turbulently in commercial pipe at low pressures. By permission, Standards for Steam Jet Ejectors, 4th Ed., Heat Exchange Institute, 1988. Figure 2-43. Evaluation curves for friction losses of air and steam flowing turbulently in commercial pipe at low pressures. By permission, Standards for Steam Jet Ejectors, 4th Ed., Heat Exchange Institute, 1988.
Typical velocities in plate heat exchangers for waterlike fluids in turbulent flow are 0.3-0.9 meters per second (m/s) but true velocities in certain regions will be higher by a factor of up to 4 due to the effect of the corrugations. All heat transfer and pressure drop relationships are, however, based on either a velocity calculated from the average plate gap or on the flow rate per passage. [Pg.395]

One particularly important feature of the plate heat exchanger is that the turbulence induced by the troughs reduces the Reynolds number at which the flow becomes laminar. If the characteristic length dimension in the Reynolds number is taken as twice the average gap between plates, the Re number at which the flow becomes laminar varies from about 100 to 400, according to the type of plate. [Pg.395]

Higher overall heat transfer coefficients are obtained with the plate heat exchanger compared with a tubular for a similar loss of pressure because the shell side of a tubular exchanger is basically a poor design from a thermal point of view. Considerable pressure drop is used without much benefit in heat transfer efficiency. This is due to the turbulence in the separated region at the rear of the tube. Additionally, large areas of tubes even in a well-designed tubular unit are partially bypassed by liquid and low heat transfer areas are thus created. [Pg.397]

This form of attack, especially as affecting copper alloys in sea water, has been widely studied since the pioneer work of Bengough and May . Impingement attack of sea water pipe and heat exchanger systems is considered in Sections 1.6 and 4.2. In such engineering systems the water flow is invariably turbulent and the thickness of the laminar boundary layer is an important factor in controlling localised corrosion. [Pg.374]

Whenever possible, streamline conditions of flow are avoided in heat exchangers because of the very low heat transfer coefficients which are obtained. With very viscous liquids, however, turbulent conditions can be produced only if a very high pressure drop across the plant is permissible. In the processing industries, streamline flow in heat exchangers is most commonly experienced with heavy oils and brines at low temperatures. Since the viscosity of these materials is critically dependent on temperature, the equations would not be expected to apply with a high degree of accuracy. [Pg.426]

Concentric tube heat exchangers are widely used because of their simplicity of construction and the ease with which additions may be made to increase the area. They also give turbulent conditions at low volumetric flowrates. [Pg.433]


See other pages where Heat exchangers turbulence is mentioned: [Pg.241]    [Pg.83]    [Pg.84]    [Pg.269]    [Pg.498]    [Pg.64]    [Pg.285]    [Pg.28]    [Pg.90]    [Pg.92]    [Pg.226]    [Pg.560]    [Pg.638]    [Pg.1035]    [Pg.1573]    [Pg.2070]    [Pg.127]    [Pg.15]    [Pg.42]    [Pg.435]    [Pg.218]    [Pg.714]    [Pg.5]    [Pg.364]    [Pg.399]    [Pg.400]    [Pg.428]    [Pg.73]    [Pg.75]    [Pg.520]    [Pg.524]    [Pg.80]   
See also in sourсe #XX -- [ Pg.331 ]




SEARCH



Turbulence exchangers

© 2024 chempedia.info