Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hashitsume-Shibata-Takahashi identity

Basically the perturbative techniques can be grouped into two classes time-local (TL) and time-nonlocal (TNL) techniques, based on the Nakajima-Zwanzig or the Hashitsume-Shibata-Takahashi identity, respectively. Within the TL methods the QME of the relevant system depends only on the actual state of the system, whereas within the TNL methods the QME also depends on the past evolution of the system. This chapter concentrates on the TL formalism but also shows comparisons between TL and TNL QMEs. An important way how to go beyond second-order in perturbation theory is the so-called hierarchical approach by Tanimura, Kubo, Shao, Yan and others [18-26], The hierarchical method originally developed by Tanimura and Kubo [18] (see also the review in Ref. [26]) is based on the path integral technique for treating a reduced system coupled to a thermal bath of harmonic oscillators. Most interestingly, Ishizaki and Tanimura [27] recently showed that for a quadratic potential the second-order TL approximation coincides with the exact result. Numerically a hint in this direction was already visible in simulations for individual and coupled damped harmonic oscillators [28]. [Pg.340]

The time-local approach is based on the Hashitsume-Shibata-Takahashi identity and is also denoted as time-convolutionless formalism [43], partial time ordering prescription (POP) [40-42], or Tokuyama-Mori approach [46]. This can be derived formally from a second-order cumulant expansion of the time-ordered exponential function and yields a resummation of the COP expression [40,42]. Sometimes the approach is also called the time-dependent Redfield theory [47]. As was shown by Gzyl [48] the time-convolutionless formulation of Shibata et al. [10,11] is equivalent to the antecedent version by Fulinski and Kramarczyk [49, 50]. Using the Hashitsume-Shibata-Takahashi identity whose derivation is reviewed in the appendix, one yields in second-order in the system-bath coupling [51]... [Pg.345]

Plugging this result into the differential equation for the relevant part, Eq. (50), the Hashitsume-Shibata-Takahashi identity can be obtained... [Pg.359]


See other pages where Hashitsume-Shibata-Takahashi identity is mentioned: [Pg.339]    [Pg.340]    [Pg.345]    [Pg.359]    [Pg.339]    [Pg.340]    [Pg.345]    [Pg.359]   
See also in sourсe #XX -- [ Pg.340 ]




SEARCH



Hashitsume

Shibata

© 2024 chempedia.info