Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides, aryl, arylation mechanism

These reactions follow first-order kinetics and proceed with racemisalion if the reaction site is an optically active centre. For alkyl halides nucleophilic substitution proceeds easily primary halides favour Sn2 mechanisms and tertiary halides favour S 1 mechanisms. Aryl halides undergo nucleophilic substitution with difficulty and sometimes involve aryne intermediates. [Pg.283]

A second general reaction that proceeds by an SrnI mechanistic pattern involves aryl halides. Aryl halides undergo substitution by eertain nueleophiles by a ehain mechanism of the SrnI class.Many of the reactions are initiated photochemically, and most have been conducted in liquid ammonia solution. [Pg.730]

Secondary bromides and tosylates react with inversion of stereochemistry, as in the classical SN2 substitution reaction.24 Alkyl iodides, however, lead to racemized product. Aryl and alkenyl halides are reactive, even though the direct displacement mechanism is not feasible. For these halides, the overall mechanism probably consists of two steps an oxidative addition to the metal, after which the oxidation state of the copper is +3, followed by combination of two of the groups from the copper. This process, which is very common for transition metal intermediates, is called reductive elimination. The [R 2Cu] species is linear and the oxidative addition takes place perpendicular to this moiety, generating a T-shaped structure. The reductive elimination occurs between adjacent R and R groups, accounting for the absence of R — R coupling product. [Pg.681]

The reactions represented by (191) are all nucleophilic substitutions occurring at a sulfonyl sulfur. Besides cpdisulfones substitutions of this kind are also of frequent occurrence in the chemistry of many other types of sulfonyl derivatives such as sulfonyl halides, aryl esters of sulfonic acids, etc., and many of the general aspects of their behaviour and mechanism have been examined in considerable detail. Most of the remainder of this section will be devoted to consideration of the results of such studies. [Pg.156]

The arrows on the transmetallation step are intended to indicate which group joins to which rather than a mechanism. We have seen other transmetallation reactions of this sort - Li exchanged for Cu or boron or tin for example in chapter 16 in particular. They may well go through a four-centred transition state in which the aryl group (in this case) is bonded to both metals and the halide also. Organometallic mechanisms are not always known in detail. [Pg.324]

The reaction follows an S 2 mechanism and works best with primary and secondary alkyl halides. Elimination is the only reaction observed with tertiary alkyl halides. Aryl and vinyl halides do not react. Dimethyl sulfoxide is the preferred solvent for this reaction, but alcohols and water-alcohol mixtures have also been used. [Pg.793]

Dearomatization of r -benzylpalladium complexes represents an electronically reversed variation on the reactions described earlier. Initial examples utilized allyl and allenyl stan-nanes as nucleophilic components in combination with benzyl halides and invoked mechanisms involving aryl-alkyl Pd(II) intermediates [84]. Subsequently, direct addition of stabilized nucleophiles (e.g., malonate anions) to q -naphthylpalladium complexes has been achieved [85]. [Pg.415]

I.l.IJ Reactions nitlr 1,2-, 1.3-. ami 1.4-dienes. The reaction of conjugated dienes with aryl and alkenyl halides can be explained by the following mechanism. Insertion of a conjugated 1.3-diene into an aryl or alkenylpalladium bond gives the T-allvlpalladium complex 243 as an intermediate, which reacts further... [Pg.163]

The o-keto ester 513 is formed from a bulky secondary alcohol using tricy-clohexylphosphine or triarylphosphine, but the selectivity is low[367-369]. Alkenyl bromides are less reactive than aryl halides for double carbonyla-tion[367], a-Keto amides are obtained from aryl and alkenyl bromides, but a-keto esters are not obtained by their carbonylation in alcohol[370]. A mechanism for the double carbonylation was proposed[371,372],... [Pg.199]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

A key step in the reaction mechanism appears to be nucleophilic attack on the alkyl halide by the negatively charged copper atom but the details of the mechanism are not well understood Indeed there is probably more than one mechanism by which cuprates react with organic halogen compounds Vinyl halides and aryl halides are known to be very unreactive toward nucleophilic attack yet react with lithium dialkylcuprates... [Pg.604]

Aryl halides react too slowly to undergo substitution by the Sn2 mechanism with the sodium salt of diethyl malonate and so the phenyl substituent of phenobarbital cannot be introduced in the way that alkyl substituents can... [Pg.901]

The strength of their carbon-halogen bonds causes aryl halides to react very slowly in reactions in which carbon-halogen bond cleavage is rate determining as m nude ophilic substitution for example Later m this chapter we will see examples of such reactions that do take place at reasonable rates but proceed by mechanisms distinctly dif ferent from the classical S l and 8 2 pathways... [Pg.972]

Second order kinetics is usually interpreted m terms of a bimolecular rate determining step In this case then we look for a mechanism m which both the aryl halide and the nucleophile are involved m the slowest step Such a mechanism is described m the fol lowing section... [Pg.977]

The generally accepted mechanism for nucleophilic aromatic substitution m nitro substituted aryl halides illustrated for the reaction of p fluoromtrobenzene with sodium methoxide is outlined m Figure 23 3 It is a two step addition-elimination mechanism, m which addition of the nucleophile to the aryl halide is followed by elimination of the halide leaving group Figure 23 4 shows the structure of the key intermediate The mech anism is consistent with the following experimental observations... [Pg.977]

Other aryl halides that give stabilized anions can undergo nucleophilic aromatic substitution by the addition-elimination mechanism Two exam pies are hexafluorobenzene and 2 chloropyridme... [Pg.987]

In each of the following reactions an amine or a lithium amide derivative reacts with an aryl halide Give the structure of the expected product and specify the mechanism by which it is formed... [Pg.989]

The reaction between an alkoxide ion and an aryl halide can be used to prepare alkyl aryl ethers only when the aryl halide is one that reacts rapidly by the addition-elim mation mechanism of nucleophilic aromatic substitution (Section 23 6)... [Pg.1008]

A significant modification in the stereochemistry is observed when the double bond is conjugated with a group that can stabilize a carbocation intermediate. Most of the specific cases involve an aryl substituent. Examples of alkenes that give primarily syn addition are Z- and -l-phenylpropene, Z- and - -<-butylstyrene, l-phenyl-4-/-butylcyclohex-ene, and indene. The mechanism proposed for these additions features an ion pair as the key intermediate. Because of the greater stability of the carbocations in these molecules, concerted attack by halide ion is not required for complete carbon-hydrogen bond formation. If the ion pair formed by alkene protonation collapses to product faster than reorientation takes place, the result will be syn addition, since the proton and halide ion are initially on the same side of the molecule. [Pg.355]

Elimination-addition mechanism (Section 23.8) Two-stage mechanism for nucleophilic aromatic substitution. In the first stage, an aryl halide undergoes elimination to form an aryne intermediate. In the second stage, nucleophilic addition to the aryne yields the product of the reaction. [Pg.1282]

Aryl halides undergo substitution, although not through an Sn2 mechanism, but rather via a two-step addition-elimination mechanism. (An elimination-addition mechanism is also possible see Chapter 13, Problem 12.)... [Pg.195]

Available information on the mechanism of cyclocondensation is rather contradictory. According to one hypothesis, both the condensation of aryl halides with copper acetylides and the cyclization occur in the same copper complex (63JOC2163 63JOC3313). An alternative two-stage reaction route has also been considered condensation followed by cyclization (66JOC4071 69JA6464). However, there is no clear evidence for this assumption in the literature and information on the reaction of acetylenyl-substituted acids in conditions of acetylide synthesis is absent. [Pg.58]

The mechanism of action of the cyanation reaction is considered to progress as follows an oxidative addition reaction occurs between the aryl halide and a palladium(O) species to form an arylpalladium halide complex which then undergoes a ligand exchange reaction with CuCN thus transforming to an arylpalladium cyanide. Reductive elimination of the arylpalladium cyanide then gives the aryl cyanide. [Pg.26]


See other pages where Halides, aryl, arylation mechanism is mentioned: [Pg.203]    [Pg.243]    [Pg.1109]    [Pg.224]    [Pg.165]    [Pg.1109]    [Pg.4563]    [Pg.1351]    [Pg.339]    [Pg.243]    [Pg.51]    [Pg.1282]    [Pg.728]    [Pg.733]    [Pg.172]    [Pg.154]    [Pg.154]   
See also in sourсe #XX -- [ Pg.860 ]




SEARCH



Aryl halides mechanism

Aryl halides mechanism

Arylation mechanism

Halides, aryl reaction with amines, benzyne mechanism

Halides, aryl, with active mechanism

Mechanism halides

Mechanism of Aryl Halide Amination and Etheration

© 2024 chempedia.info