Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hafnium elements

Hafnium, element 72, is found in Period 6, as shown in Fig. 12.31. Note that it occurs just after the lanthanide series. Thus the 4f orbitals are already filled. Hafnium is the second member of the 5d transition series and has two 5d electrons. The configuration is... [Pg.556]

Element 104. (eka-hafnium) is predicted to resemble its homolc hafnium (element 72) in its chemical properties. It is expected to be predominantly tetra-positive, both in aqueous solution and in its solid compounds, although it should exhibit sohd halides and perhaps aqueous ions of the +2 and +3 oxidation state as well. [Pg.114]

Hafnium (element 72) was discovered in 1923 by George Karl von Hevesy (1885-1966), a Hungarian, and Dirk Coster (1889-1950), from Holland, at the Institute of Theoretical Physics in Copenhagen ( Hafiiia in Latin), directed by Niels Bohr. The most widely held view of hafnium s... [Pg.76]

Find all the term states, including / values, for the ground electronic configuration of hafnium (element 72). The periodic table in the front of the text gives the configuration and lowest-energy term state. [Pg.204]

Before it was known that elements beyond uranium were capable of existence, the heaviest known natural elements, thorium, protactinium and uranium, were placed in a sixth period of the periodic classification, corresponding to the elements hafnium, tantalum and tungsten in the preceding period. It was therefore implied that these elements were the beginning of a new, fourth transition series, with filling of the penultimate n = 6 level (just as the penultimate = 5... [Pg.442]

Element 103, lawrencium, completes the actinides. Following this series, the transition elements should continue with the filling of the 6d orbitals. There is evidence for an element 104 (eka-hafnium) it is believed to form a chloride MCl4, similar to that of hafnium. Less positive evidence exists for elements 105 and 106 attempts (so far unsuccessful) have been made to synthesise element 114 (eka-lead). because on theoretical grounds the nucleus of this elemeni may be stable to decay by spontaneous fusion (as indeed is lead). Super-... [Pg.444]

Hafinia, Latin name for Copenhagen) Many years before its discovery in 1932 (credited to D. Coster and G. von Hevesey), Hafnium was thought to be present in various minerals and concentrations. On the basis of the Bohr theory, the new element was expected to be associated with zirconium. [Pg.130]

Hafnium is a ductile metal with a brilliant silver luster. Its properties are considerably influenced by presence of zirconium impurities. Of all the elements, zirconium and hafnium are... [Pg.130]

Because the element not only has a good absorption cross section for thermal neutrons (almost 600 times that of zirconium), but also excellent mechanical properties and is extremely corrosion-resistant, hafnium is used for reactor control rods. Such rods are used in nuclear submarines. [Pg.131]

Element 104, the first transactinide element, is expected to have chemical properties similar to those of hafnium. It would, for example, form a relatively volatile compound with chlorine (a tetrachloride). [Pg.158]

Study of the chemical properties of element 104 has confirmed that it is indeed homologous to hafnium as demanded by its position in the Periodic Table (20). Chemical studies have been made for element 105, showing some similarity to tantalum (25) no chemical studies have been made for elements 106—109. Such studies are very difficult because the longest-Hved isotope of 104 ( 104) has a half-Hfe of only about 1 min, of 105 ( 105) a half-Hfe of about 40 s, of 106 ( 106) a half-Hfe of about 1 s, and of elements 107—109 half-Hves in the range of milliseconds. [Pg.225]

Hafnium [7440-58-6] Hf, is in Group 4 (IVB) of the Periodic Table as are the lighter elements zirconium and titanium. Hafnium is a heavy gray-white metallic element never found free in nature. It is always found associated with the more plentiful zirconium. The two elements are almost identical in chemical behavior. This close similarity in chemical properties is related to the configuration of the valence electrons, and for zirconium and... [Pg.439]

Whereas zirconium was discovered in 1789 and titanium in 1790, it was not until 1923 that hafnium was positively identified. The Bohr atomic theory was the basis for postulating that element 72 should be tetravalent rather than a trivalent member of the rare-earth series. Moseley s technique of identification was used by means of the x-ray spectra of several 2ircon concentrates and lines at the positions and with the relative intensities postulated by Bohr were found (1). Hafnium was named after Hafma, the Latin name for Copenhagen where the discovery was made. [Pg.439]

Most hafnium compounds have been of slight commercial interest aside from intermediates in the production of hafnium metal. However, hafnium oxide, hafnium carbide, and hafnium nitride are quite refractory and have received considerable study as the most refractory compounds of the Group 4 (IVB) elements. Physical properties of some of the hafnium compounds are shown in Table 4. [Pg.444]

Hafnium Boride. Hafnium diboride [12007-23-7] HfB2, is a gray crystalline soHd. It is usually prepared by the reaction of hafnium oxide with carbon and either boron oxide or boron carbide, but it can also be prepared from mixtures of hafnium tetrachloride, boron trichloride, and hydrogen above 2000°C, or by direct synthesis from the elements. Hafnium diboride is attacked by hydrofluoric acid but is resistant to nearly all other reagents at room temperature. Hafnium dodecaboride [32342-52-2] has been prepared by direct synthesis from the elements (56). [Pg.444]

Hafnium Carbide. Hafnium carbide, HfC, is a dark gray brittle soHd. This carbide can be prepared by heating an intimate mixture of the elements or by the reaction of hafnium tetrachloride with methane at 2100°C, but is commonly produced by the reaction of hafnium oxide with lampblack... [Pg.444]

Hafnium Sulfides. Several sulfides of hafnium have been prepared, including Hf2S, HfS, and HfS2, by the reaction of the mixed elements at... [Pg.445]

Niobium is important as an alloy addition in steels (see Steel). This use consumes over 90% of the niobium produced. Niobium is also vital as an alloying element in superalloys for aircraft turbine engines. Other uses, mainly in aerospace appHcations, take advantage of its heat resistance when alloyed singly or with groups of elements such as titanium, tirconium, hafnium, or tungsten. Niobium alloyed with titanium or with tin is also important in the superconductor industry (see High temperature alloys Refractories). [Pg.20]

Zirconium [7440-67-7] is classified ia subgroup IVB of the periodic table with its sister metallic elements titanium and hafnium. Zirconium forms a very stable oxide. The principal valence state of zirconium is +4, its only stable valence in aqueous solutions. The naturally occurring isotopes are given in Table 1. Zirconium compounds commonly exhibit coordinations of 6, 7, and 8. The aqueous chemistry of zirconium is characterized by the high degree of hydrolysis, the formation of polymeric species, and the multitude of complex ions that can be formed. [Pg.426]

In the tributyl phosphate extraction process developed at the Ames Laboratory, Iowa State University (46—48), a solution of tributyl phosphate (TBP) in heptane is used to extract zirconium preferentially from an acid solution (mixed hydrochloric—nitric or nitric acid) of zirconium and hafnium (45). Most other impurity elements remain with the hafnium in the aqueous acid layer. Zirconium recovered from the organic phase can be precipitated by neutralization without need for further purification. [Pg.430]

Assay of beryUium metal and beryUium compounds is usuaUy accompHshed by titration. The sample is dissolved in sulfuric acid. Solution pH is adjusted to 8.5 using sodium hydroxide. The beryUium hydroxide precipitate is redissolved by addition of excess sodium fluoride. Liberated hydroxide is titrated with sulfuric acid. The beryUium content of the sample is calculated from the titration volume. Standards containing known beryUium concentrations must be analyzed along with the samples, as complexation of beryUium by fluoride is not quantitative. Titration rate and hold times ate critical therefore use of an automatic titrator is recommended. Other fluotide-complexing elements such as aluminum, sUicon, zirconium, hafnium, uranium, thorium, and rate earth elements must be absent, or must be corrected for if present in smaU amounts. Copper-beryUium and nickel—beryUium aUoys can be analyzed by titration if the beryUium is first separated from copper, nickel, and cobalt by ammonium hydroxide precipitation (15,16). [Pg.68]

The isolation and identification of 4 radioactive elements in minute amounts took place at the turn of the century, and in each case the insight provided by the periodic classification into the predicted chemical properties of these elements proved invaluable. Marie Curie identified polonium in 1898 and, later in the same year working with Pierre Curie, isolated radium. Actinium followed in 1899 (A. Debierne) and the heaviest noble gas, radon, in 1900 (F. E. Dorn). Details will be found in later chapters which also recount the discoveries made in the present century of protactinium (O. Hahn and Lise Meitner, 1917), hafnium (D. Coster and G. von Hevesey, 1923), rhenium (W. Noddack, Ida Tacke and O. Berg, 1925), technetium (C. Perrier and E. Segre, 1937), francium (Marguerite Percy, 1939) and promethium (J. A. Marinsky, L. E. Glendenin and C. D. Coryell, 1945). [Pg.30]

The discovery of hafnium was one of chemistry s more controversial episodes. In 1911 G. Urbain, the French chemist and authority on rare earths , claimed to have isolated the element of atomic number 72 from a sample of rare-earth residues, and named it celtium. With hindsight, and more especially with an understanding of the consequences of H. G. J. Moseley s and N. Bohr s work on atomic structure, it now seems very unlikely that element 72 could have been found in the necessary concentrations along with rare earths. But this knowledge was lacking in the early part of the century and, indeed, in 1922 Urbain and A. Dauvillier claimed to have X-ray evidence to support the discovery. However, by that time Niels Bohr had developed his atomic theory and so was confident that element 72 would be a... [Pg.954]


See other pages where Hafnium elements is mentioned: [Pg.848]    [Pg.897]    [Pg.362]    [Pg.196]    [Pg.362]    [Pg.531]    [Pg.609]    [Pg.246]    [Pg.255]    [Pg.215]    [Pg.235]    [Pg.60]    [Pg.848]    [Pg.897]    [Pg.362]    [Pg.196]    [Pg.362]    [Pg.531]    [Pg.609]    [Pg.246]    [Pg.255]    [Pg.215]    [Pg.235]    [Pg.60]    [Pg.198]    [Pg.443]    [Pg.216]    [Pg.227]    [Pg.443]    [Pg.445]    [Pg.122]    [Pg.323]    [Pg.7]    [Pg.40]    [Pg.170]    [Pg.955]   
See also in sourсe #XX -- [ Pg.292 ]




SEARCH



Hafnium elemental

Hafnium reactive elements

Hafnium, alloying element

Hafnium, elemental halides

Hafnium, elemental hydride

Hafnium, elemental oxidation states

© 2024 chempedia.info