Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Periodic table of the groups

In any group of the periodic table we have already noted that the number of electrons in the outermost shell is the same for each element and the ionisation energy falls as the group is descended. This immediately predicts two likely properties of the elements in a group (a) their general similarity and (b) the trend towards metallic behaviour as the group is descended. We shall see that these predicted properties are borne out when we study the individual groups. [Pg.20]

The chemical properties of the elements in a given group of the Periodic Table change with increasing atomic number. [Pg.205]

By considering the trends in the vertical groups of the Periodic Table, deduce possible answers to the following questions concerning the element astatine (At), atomic number 85. [Pg.351]

The strength of an acid depends on the atom to which the proton is bonded The two mam factors are the strength of the H—X bond and the electronegativity of X Bond strength is more important for atoms m the same group of the periodic table electronegativity is more important for atoms m the same row Electronegative atoms elsewhere m the molecule can increase the acidity by inductive effects... [Pg.50]

Phosphorus is m the same group of the periodic table as nitrogen and tricoordi nate phosphorus compounds (phosphines) like amines are trigonal pyramidal Phos phmes however undergo pyramidal inversion much more slowly than amines and a number of optically active phosphines have been prepared... [Pg.314]

An estimate of the hybridization state of an atom in a molecule can be obtained from the group of the periodic table that the atom resides in (which describes the number of valence electrons) and the connectivity (coordination of the atom). The HyperChem default scheme uses this estimate to assign a hybridization state to all atoms from the set (null, s, sp, sp, sp -, and sp ). The special... [Pg.207]

These data also show that the bond energies decrease as the atomic number of the metal increases in the same Group of the Periodic Table. [Pg.68]

During the operation of nuclear power reactors, which are fuelled with ceramic UO2 fuel rods, the fission of the nuclei leads to die formation of fission products which are isotopes of elements in all of tire Groups of the Periodic Table. The major fission products, present in 1-10% abundance, fall into five groups divided according to the chemical interaction of each product with the fuel ... [Pg.249]

The atoms of elements in a group of the periodic table have the same distribution of electrons in the outermost principal energy level... [Pg.145]

The last vertical column of the eighth group of the Periodic Table of the Elements comprises the three metals nickel, palladium, and platinum, which are the catalysts most often used in various reactions of hydrogen, e.g. hydrogenation, hydrogenolysis, and hydroisomerization. The considerations which are of particular relevance to the catalytic activity of these metals are their surface interactions with hydrogen, the various states of its adatoms, and admolecules, eventually further influenced by the coadsorbed other reactant species. [Pg.245]

It is convenient to classify here the decompositions of metal salts of the various oxyhalogen acids on the basis of the oxygen content of the anion, with subsections devoted to the metals of a particular sub-group of the Periodic Table. Again, consideration of the ammonium salts is deferred to Sect. 4. As noted elsewhere in this review, some reports are not explicit as to whether or not melting accompanies reaction thermal analysis studies can be valuable [843]. [Pg.185]

FIGURE 12.9 The variation of standard potentials through the main groups of the periodic table. Note that the most negative values are in the s block and that the most positive values are close to fluorine. [Pg.621]

Why Do We Need to Know This Material The elements in the last four groups of the periodic table illustrate the rich variety of the properties of the nonmetals and many of the principles of chemistry. These elements include some that are vital to life, such as the nitrogen of proteins, the oxygen of the air, and the phosphorus of our bones, and so a familiarity with their properties helps us to understand living systems. Many of these elements are also central to the materials that provide the backbone of emerging technologies such as the nanosciences, superconductivity, and computer displays. [Pg.743]

In the next breath you take, almost all the atoms you inhale will be of elements in the final four groups of the periodic table. Except for the gases containing carbon and hydrogen, air is made up almost entirely of elements from this part of the p block, some as elements and some as compounds. The p-block elements are present in most of the compounds necessary for life and are used to create fascinating and useful modern materials, such as superconductors, plasma screens, and high-performance nanodevices. [Pg.743]

It is possible that the explanation of these discrepancies is to be found in the fact that the resonance integral, may vary with the row and group of the periodic table. Such a variation must almost certainly exist, but it can be taken into account only with difficulty. Furthermore, the introduction of the large number of additional arbitrary parameters would deprive the whole procedure of much of its significance. A second possible explanation is that, with phenol for ex-... [Pg.200]

The gap in superconductivity between the fifth and sixth groups of the periodic table, discovered by Matthias,24 is seen to correspond to the transition from crest to trough superconductivity. It does not require for its explanation the assumption20- 25 that there are mechanisms of superconductivity other than the electron-phonon interaction. [Pg.830]

The racemization mechanism of sec-alcohols has been widely studied [16,17]. Metal complexes of the main groups of the periodic table react through a direct transfer of hydrogen (concerted process), such as aluminum complexes in Meerwein-Ponn-dorf-Verley-Oppenauer reaction. However, racemization catalyzed by transition metal complexes occurs via hydrogen transfer processes through metal hydrides or metal dihydrides intermediates (Figure 4.5) [18]. [Pg.94]

If both elements are from the same group of the periodic table, the lower one appears first SiC and... [Pg.121]

Similar electron accessibility generates similar chemical behavior. For example, iodine has many more electrons than chlorine, but these two elements display similar chemical behavior, as reflected by their placement in the same group of the periodic table. This is because the chemistry of chlorine and iodine is determined by the number of electrons in their largest and least stable occupied orbitals 3 S and 3 p for chlorine and 5 S and 5 p for iodine. Each of these elements has seven accessible electrons, and this accounts for the chemical similarities. [Pg.519]

IE2— 965, I E-i — 3600, E A = 46. In what group of the periodic table is this element found Give your reasoning. Refer to Appendix C if necessary. [Pg.561]

Numerous ternary systems are known for II-VI structures incorporating elements from other groups of the Periodic Table. One example is the Zn-Fe-S system Zn(II) and Fe(II) may substimte each other in chalcogenide structures as both are divalent and have similar radii. The cubic polymorphs of ZnS and FeS have almost identical lattice constant a = 5.3 A) and form solid solutions in the entire range of composition. The optical band gap of these alloys varies (rather anomalously) within the limits of the ZnS (3.6 eV) and FeS (0.95 eV) values. The properties of Zn Fei-xS are well suited for thin film heterojunction-based solar cells as well as for photoluminescent and electroluminescent devices. [Pg.47]

Silica is reduced violently when heated with the metals from earlier groups of the periodic table. For magnesium this reaction is aggravated when water traces are present. [Pg.177]

In the first series, there are a large number of compounds of elements with a low oxidation state (II or III like MnO ) whereas there are only a few compounds with oxidation states II or III in the higher series. Compounds with oxidation states IV and VIII are the most stable. This phenomenon can be obsen/ed in all the groups of the periodic table. [Pg.217]


See other pages where Periodic table of the groups is mentioned: [Pg.525]    [Pg.40]    [Pg.405]    [Pg.379]    [Pg.64]    [Pg.65]    [Pg.40]    [Pg.224]    [Pg.295]    [Pg.13]    [Pg.38]    [Pg.42]    [Pg.43]    [Pg.102]    [Pg.136]    [Pg.163]    [Pg.169]    [Pg.171]    [Pg.946]    [Pg.330]    [Pg.42]    [Pg.121]    [Pg.516]    [Pg.744]    [Pg.148]    [Pg.195]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Group . periodic

Group Tables

Groups of periodic table

Groups, periodic table

The periodic table

© 2024 chempedia.info