Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass transition materials

To summarize when the elastic phase predominates the IPN s behave like reinforced elastomers. As the glassy component is increased the material becomes an impact resistant plastic. At midrange compositions or at temperatures between the two glass transitions materials exhibiting leathery behavior are obtained. [Pg.447]

Material properties can be further classified into fundamental properties and derived properties. Fundamental properties are a direct consequence of the molecular structure, such as van der Waals volume, cohesive energy, and heat capacity. Derived properties are not readily identified with a certain aspect of molecular structure. Glass transition temperature, density, solubility, and bulk modulus would be considered derived properties. The way in which fundamental properties are obtained from a simulation is often readily apparent. The way in which derived properties are computed is often an empirically determined combination of fundamental properties. Such empirical methods can give more erratic results, reliable for one class of compounds but not for another. [Pg.311]

Polymers will be elastic at temperatures that are above the glass-transition temperature and below the liquiflcation temperature. Elasticity is generally improved by the light cross linking of chains. This increases the liquiflcation temperature. It also keeps the material from being permanently deformed when stretched, which is due to chains sliding past one another. Computational techniques can be used to predict the glass-transition and liquiflcation temperatures as described below. [Pg.312]

Irregularities such as branch points, comonomer units, and cross-links lead to amorphous polymers. They do not have true melting points but instead have glass transition temperatures at which the rigid and glasslike material becomes a viscous liquid as the temperature is raised. [Pg.1006]

Polymeric materials are unique owing to the presence of a glass-transition temperature. At the glass-transition temperatures, the specific volume of the material and its rate of change changes, thus, affecting a multitude of physical properties. Numerous types of devices could be developed based on this type of stimuli—response behavior however, this technology is beyond the scope of this article. [Pg.250]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

In the area of moleculady designed hot-melt adhesives, the most widely used resins are the polyamides (qv), formed upon reaction of a diamine and a dimer acid. Dimer acids (qv) are obtained from the Diels-Alder reaction of unsaturated fatty acids. Linoleic acid is an example. Judicious selection of diamine and diacid leads to a wide range of adhesive properties. Typical shear characteristics are in the range of thousands of kilopascals and are dependent upon temperature. Although hot-melt adhesives normally become quite brittle below the glass-transition temperature, these materials can often attain physical properties that approach those of a stmctural adhesive. These properties severely degrade as the material becomes Hquid above the melt temperature. [Pg.235]

As appHed to hydrocarbon resins, dsc is mainly used for the determination of glass-transition temperatures (7p. Information can also be gained as to the physical state of a material, ie, amorphous vs crystalline. As a general rule of thumb, the T of a hydrocarbon resin is approximately 50°C below the softening point. Oxidative induction times, which are also deterrnined by dsc, are used to predict the relative oxidative stabiHty of a hydrocarbon resin. [Pg.350]

To erase information by the transition amorphous — crystalline, the amorphous phase of the selected area must be crystallized by annealing. This is effected by illumination with a low power laser beam (6—15 mW, compared to 15—50 mW for writing/melting), thus crystallizing the area. This crystallization temperature is above the glass-transition point, but below the melting point of the material concerned (Eig. 15, Erase). [Pg.149]

A plasticizer is a substance the addition of which to another material makes that material softer and more flexible. This broad definition encompasses the use of water to plasticize clay for the production of pottery, and oils to plasticize pitch for caulking boats. A more precise definition of plasticizers is that they are materials which, when added to a polymer, cause an increase in the flexibiUty and workabiUty, brought about by a decrease in the glass-transition temperature, T, of the polymer. The most widely plasticized polymer is poly(vinyl chloride) (PVC) due to its excellent plasticizer compatibility characteristics, and the development of plasticizers closely follows the development of this commodity polymer. However, plasticizers have also been used and remain in use with other polymer types. [Pg.121]

The iatroduction of a plasticizer, which is a molecule of lower molecular weight than the resia, has the abiUty to impart a greater free volume per volume of material because there is an iucrease iu the proportion of end groups and the plasticizer has a glass-transition temperature, T, lower than that of the resia itself A detailed mathematical treatment (2) of this phenomenon can be carried out to explain the success of some plasticizers and the failure of others. Clearly, the use of a given plasticizer iu a certain appHcation is a compromise between the above ideas and physical properties such as volatiUty, compatibihty, high and low temperature performance, viscosity, etc. This choice is appHcation dependent, ie, there is no ideal plasticizer for every appHcation. [Pg.124]


See other pages where Glass transition materials is mentioned: [Pg.25]    [Pg.79]    [Pg.44]    [Pg.117]    [Pg.1301]    [Pg.272]    [Pg.25]    [Pg.79]    [Pg.44]    [Pg.117]    [Pg.1301]    [Pg.272]    [Pg.455]    [Pg.130]    [Pg.1718]    [Pg.2533]    [Pg.2534]    [Pg.314]    [Pg.66]    [Pg.67]    [Pg.200]    [Pg.244]    [Pg.776]    [Pg.121]    [Pg.240]    [Pg.244]    [Pg.246]    [Pg.434]    [Pg.233]    [Pg.256]    [Pg.285]    [Pg.405]    [Pg.579]    [Pg.328]    [Pg.69]    [Pg.155]    [Pg.260]    [Pg.90]    [Pg.142]    [Pg.136]    [Pg.532]    [Pg.301]    [Pg.151]    [Pg.221]    [Pg.267]    [Pg.279]   
See also in sourсe #XX -- [ Pg.639 ]




SEARCH



Glass material

© 2024 chempedia.info