Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gel supercritical

Using inorganic salts as precursors, alcohol as the supercritical drying agent, and a batch process a solvent-exchange step was necessary to remove water from the gel. [Pg.3]

The use of separation techniques, such as gel permeation and high pressure Hquid chromatography interfaced with sensitive, silicon-specific aas or ICP detectors, has been particularly advantageous for the analysis of siUcones in environmental extracts (469,483—486). Supercritical fluid chromatography coupled with various detection devices is effective for the separation of siUcone oligomers that have molecular weights less than 3000 Da. Time-of-flight secondary ion mass spectrometry (TOF-sims) is appHcable up to 10,000 Da (487). [Pg.60]

Overview. Three approaches are used to make most sol—gel products method 1 involves gelation of a dispersion of colloidal particles method 2 employs hydrolysis and polycondensation of alkoxide or metal salts precursors followed by supercritical drying of gels and method 3 involves hydrolysis and polycondensation of alkoxide precursors followed by aging and drying under ambient atmospheres. [Pg.249]

Production of net-shape siUca (qv) components serves as an example of sol—gel processing methods. A siUca gel may be formed by network growth from an array of discrete coUoidal particles (method 1) or by formation of an intercoimected three-dimensional network by the simultaneous hydrolysis and polycondensation of a chemical precursor (methods 2 and 3). When the pore Hquid is removed as a gas phase from the intercoimected soHd gel network under supercritical conditions (critical-point drying, method 2), the soHd network does not coUapse and a low density aerogel is produced. Aerogels can have pore volumes as large as 98% and densities as low as 80 kg/m (12,19). [Pg.249]

Supercritical and Freeze Drying. To eliminate surface tension related drying stresses in fine pore materials such as gels, ware can be heated in an autoclave until the Hquid becomes a supercritical fluid, after which drying can be accompHshed by isothermal depressurization to remove the fluid (45,69,72) (see Supercritical fluid). In materials that are heat sensitive, the ware can be frozen and the frozen Hquid can be removed by sublimation (45,69). [Pg.310]

Purification of poloxamers has been extensively investigated due to their use in medical applications, the intention often being to remove potentially toxic components. Supercritical fluid fractionation and liquid fractionation have been used successfully to remove low-molecular weight impurities and antioxidants from poloxamers. Gel filtration, high-performance liquid chromatography (HPLC), and ultrafiltration through membranes are among the other techniques examined [5]. [Pg.768]

Chromatography is a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary (the stationary phase), while the other (the mobile phase) moves in a definite direction. A mobile phase is described as a fluid which percolates through or along the stationary bed in a definite direction . It may be a liquid, a gas or a supercritical fluid, while the stationary phase may be a solid, a gel or a liquid. If a liquid, it may be distributed on a solid, which may or may not contribute to the separation process. ... [Pg.24]

Transition-metal mixed oxides active in combustion catalysis have been prepared by two main procedures i) classical coprecipitation / calcination procedures starting from metal nitrates and/ or alkoxides ii) preparation based on the supercritical drying of gels prepared from organic complexes (alkoxides, acetylacetonates or acetates), producing aerogels . Details on the second preparation can be found in Ref. 13. [Pg.484]

If simple sample pretreatment procedures are insufficient to simplify the complex matrix often observed in process mixtures, multidimensional chromatography may be required. Manual fraction collection from one separation mode and re-injection into a second mode are impractical, so automatic collection and reinjection techniques are preferred. For example, a programmed temperature vaporizer has been used to transfer fractions of sterols such as cholesterol and stigmasterol from a reversed phase HPLC system to a gas chromatographic system.11 Interfacing gel permeation HPLC and supercritical fluid chromatography is useful for nonvolatile or thermally unstable analytes and was demonstrated to be extremely useful for separation of compounds such as pentaerythritol tetrastearate and a C36 hydrocarbon standard.12... [Pg.91]

Boujday, S., Wiinsch, F., Portes, P., Bocquet, J.F., and Colbeau-Justin, C. (2004) Photocatalytic and electronic properties of Ti02 powders elaborated by sol-gel route and supercritical drying. Solar Energy Materials ej Solar Cells, 83 (4), 421-433. [Pg.123]

Torma, V., Peterlik, H., Bauer, U., Rupp, W., Husing, N., Bernstorff, S., Steinhart, M., Goerigk, G. and Schubert, U. (2005) Mixed silica titania materials prepared from a singlesource sol-gel precursor A time-resolved SAXS study of the gelation, aging, supercritical drying, and calcination processes. Chemistry of Materials, 17, 3146-3153. [Pg.112]

The first phase in the process is the formation of the sol . A sol is a colloidal suspension of solid particles in a liquid. Colloids are solid particles with diameters of 1-100 nm. After a certain period, the colloidal particles and condensed silica species link to form a gel - an interconnected, rigid network with pores of submicrometer dimensions and polymeric chains whose average length is greater than one micrometer. After the sol-gel transition, the solvent phase is removed from the interconnected pore network. If removed by conventional drying such as evaporation, so-called xerogels are obtained, if removed via supercritical evacuation, the product is an aerogel . [Pg.301]


See other pages where Gel supercritical is mentioned: [Pg.317]    [Pg.918]    [Pg.672]    [Pg.888]    [Pg.218]    [Pg.108]    [Pg.2394]    [Pg.32]    [Pg.1442]    [Pg.317]    [Pg.918]    [Pg.672]    [Pg.888]    [Pg.218]    [Pg.108]    [Pg.2394]    [Pg.32]    [Pg.1442]    [Pg.2767]    [Pg.1]    [Pg.1]    [Pg.2]    [Pg.2]    [Pg.3]    [Pg.3]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.5]    [Pg.6]    [Pg.8]    [Pg.491]    [Pg.248]    [Pg.251]    [Pg.334]    [Pg.65]    [Pg.465]    [Pg.51]    [Pg.52]    [Pg.53]    [Pg.60]    [Pg.73]    [Pg.91]    [Pg.92]    [Pg.174]    [Pg.191]    [Pg.323]    [Pg.466]   
See also in sourсe #XX -- [ Pg.159 , Pg.185 , Pg.186 , Pg.187 , Pg.188 ]




SEARCH



Sol-Gel Synthesis and Supercritical Drying

© 2024 chempedia.info