Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gel permeation chromatography technique

By gamma ray irradiation of cellulose fibers, it was noticed that a separation of a gas mixture (25-30% H 13-18% CO 45-58% CO and 2-3% CH ) occurs due to the dehydrogenation, depolymerization and glucoside chain destruction. By analyzing the molar mass and polydispersity of the irradiated cellulose fibers with gel permeation chromatography technique, it was concluded that cellulose destruction by high energy radiation profoundly affects the molecular structure on both a primary and supramo-lecular level [34]. [Pg.11]

Injection molding binders have been characterized for thermal conductivity, specific heat, glass transition temperature and pressure-volume-temperature (p-v-t) correlation. These properties have also been used for the FEM (finite element method) analysis of the injection molding process. DSC and Gel Permeation Chromatography techniques were also utilized to characterize the virgin binder and the molding compound for Q.C purposes. [Pg.39]

By treatment of these materials with titanium tetrachloride valuable supported catalysts for the propene Ziegler-Natta type polymerization were obtained. These catalysts were tested by slurry polymerization using triethylaluminium as cocatalyst and showed an interesting activity compared with that exhibited by a commercial catalysts. The polymer products were also characterized by measuring the molecular weight distribution by gel permeation chromatography technique. [Pg.818]

An AFM-based molecular weight distribution was calculated and compared to results from standard gel permeation chromatography techniques [207]. [Pg.451]

Gel permeation chromatography, exclusion chromatography. gel filtration chromatography. A technique for separating the components of a mixture according to molecular volume differences. A porous solid phase (a polymer, molecular sieve) is used which can physically entrap small molecules in the pores whilst large molecules pass down the column more rapidly. A solvent pressure up to 1000 psi may be used. [Pg.98]

At first glance, the contents of Chap. 9 read like a catchall for unrelated topics. In it we examine the intrinsic viscosity of polymer solutions, the diffusion coefficient, the sedimentation coefficient, sedimentation equilibrium, and gel permeation chromatography. While all of these techniques can be related in one way or another to the molecular weight of the polymer, the more fundamental unifying principle which connects these topics is their common dependence on the spatial extension of the molecules. The radius of gyration is the parameter of interest in this context, and the intrinsic viscosity in particular can be interpreted to give a value for this important quantity. The experimental techniques discussed in Chap. 9 have been used extensively in the study of biopolymers. [Pg.496]

Among the techniques employed to estimate the average molecular weight distribution of polymers are end-group analysis, dilute solution viscosity, reduction in vapor pressure, ebuUiometry, cryoscopy, vapor pressure osmometry, fractionation, hplc, phase distribution chromatography, field flow fractionation, and gel-permeation chromatography (gpc). For routine analysis of SBR polymers, gpc is widely accepted. Table 1 lists a number of physical properties of SBR (random) compared to natural mbber, solution polybutadiene, and SB block copolymer. [Pg.493]

The crowning development in MW determination was the invention of gel permeation chromatography, the antecedents of which began in 1952 and which was finally perfected by Moore (1964). A column is filled with pieces of cross-linked macroporous resin and a polymer solution (gel) is made to flow through the column. The polymer solute permeates the column more slowly when the molecules are small, and the distribution of molecules after a time is linked not only to the average MW but also, for the first time with these techniques, to the vital parameter of MW distribution. [Pg.331]

Size exclusion was first noted in the late fifties when separations of proteins on columns packed with swollen maize starch were observed (Lindqvist and Storgards, 1955 Lathe and Ruthven, 1956). The run time was typically 48 hr. With the advent of a commercial material for size separation of molecules, a gel of cross-linked dextran, researchers were given a purposely made material for size exclusion, or gel filtration, of solutes as described in the classical work by Porath and Flodin (1959). The material, named Sephadex, was made available commercially by Pharmacia in 1959. This promoted a rapid development of the technique and it was soon applied to the separation of proteins and aqueous polymers. The work by Porath and Flodin promoted Moore (1964) to apply the technique to size separation, gel permeation chromatography of organic molecules on gels of lightly cross-linked polystyrene (i.e., Styragel). [Pg.27]

ADMET polymers are easily characterized using common analysis techniques, including nuclear magnetic resonance ( H and 13C NMR), infrared (IR) spectra, elemental analysis, gel permeation chromatography (GPC), vapor pressure osmometry (VPO), membrane osmometry (MO), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The preparation of poly(l-octenylene) (10) via the metathesis of 1,9-decadiene (9) is an excellent model polymerization to study ADMET, since the monomer is readily available and the polymer is well known.21 The NMR characterization data (Fig. 8.9) for the hydrogenated versions of poly(l-octenylene) illustrate the clean and selective nature of ADMET. [Pg.442]

Attempts were made to determine number average molecular weights (Mn) by osmometry (Mechrolab Model 502, high speed membrane osmometer, 1 to 10 g/1 toluene solution at 37 °C), however, in many instances irreproducible data were obtained, probably due to the diffusion of low molecular weight polymer through the membrane. This technique was abandoned in favor of gel permeation chromatography (GPC). [Pg.90]

In principle all methods except viscosity measurement can be used to obtain absolute values of molar mass. Viscosity methods, by contrast, do not give absolute values, but rely on prior calibration using standards of known molar mass. The relationship between polymer solution viscosity and molar mass is merely empirical but the techniques are widely used because of their simplicity. All of the absolute methods are time-consuming and laborious and are not used on a routine basis. As well as the techniques already mentioned, there is the size-exclusion method of chromatography known as Gel-Permeation Chromatography (GPC). All of these methods are discussed in detail in the sections that follow. [Pg.81]

Gel permeation chromatography (GPC) is a widely used technique for determining molar mass and molar mass distrihution of polymers. In its usual form it is not an absolute method, though hy making the appropriate measurements it may be made to be so. [Pg.91]

When the full distribution is needed, it is measured by size-exclusion chromatography (also called gel permeation chromatography). This is a solution technique that requires dissolution of the polymer in a reasonable solvent such as tetrahydrofuran or tetrachlorlobenzene. For polymers that require exotic solvents or solution temperatures above about 150°C, a simple measurement of solution viscosity can be a useful surrogate for the actual molecular weight. The viscosity of the pure polymer (i.e., a polymer melt viscosity) can also be used. Such simplified techniques are often satisfactory for routine quality control, particularly for condensation polymers such as PET that vary in average molecular weight but usually have a polydispersity of 2. [Pg.472]


See other pages where Gel permeation chromatography technique is mentioned: [Pg.133]    [Pg.122]    [Pg.199]    [Pg.49]    [Pg.173]    [Pg.133]    [Pg.122]    [Pg.199]    [Pg.49]    [Pg.173]    [Pg.537]    [Pg.642]    [Pg.642]    [Pg.139]    [Pg.192]    [Pg.276]    [Pg.332]    [Pg.539]    [Pg.390]    [Pg.403]    [Pg.166]    [Pg.300]    [Pg.149]    [Pg.397]    [Pg.481]    [Pg.181]    [Pg.318]    [Pg.312]    [Pg.75]    [Pg.219]    [Pg.238]    [Pg.190]    [Pg.770]    [Pg.220]    [Pg.542]    [Pg.119]    [Pg.241]    [Pg.284]    [Pg.44]    [Pg.255]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



GEL PERMEATION

Gel permeation chromatography

Gel-chromatography

Permeation chromatography

Permeation techniques

© 2024 chempedia.info