Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gaussian-type calculations

Csizmadia I G, Flarrison M C, Moscowitz J Wand Sutcliffe B T 1966 Commentationes. Non-empirical LCAO-MO-SCF-Cl calculations on organic molecules with Gaussian type functions. Part I. Introductory review and mathematical formalism Theoret. Chim. Acta 6 191-216... [Pg.2195]

Because th e calculation of m n Iti-ceiiter in tegrals that are in evitable for ah iniiio method is very difficult and time-con sum in g. Ilyper-Chem uses Gaussian Type Orbital (GTO) for ah initio methods. In truly reflecting a atomic orbital. STO may he better than GTO. so HyperC hem uses several GTOs to construct a STO. The number of GTOs depends on the basis sets. For example, in the minimum STO-3G basis set IlyperGhem uses three GTOs to construct a STO. [Pg.43]

The second approximation in HF calculations is due to the fact that the wave function must be described by some mathematical function, which is known exactly for only a few one-electron systems. The functions used most often are linear combinations of Gaussian-type orbitals exp(—nr ), abbreviated GTO. The wave function is formed from linear combinations of atomic orbitals or, stated more correctly, from linear combinations of basis functions. Because of this approximation, most HF calculations give a computed energy greater than the Hartree-Fock limit. The exact set of basis functions used is often specified by an abbreviation, such as STO—3G or 6—311++g. Basis sets are discussed further in Chapters 10 and 28. [Pg.19]

T vo main streams of computational techniques branch out fiom this point. These are referred to as ab initio and semiempirical calculations. In both ab initio and semiempirical treatments, mathematical formulations of the wave functions which describe hydrogen-like orbitals are used. Examples of wave functions that are commonly used are Slater-type orbitals (abbreviated STO) and Gaussian-type orbitals (GTO). There are additional variations which are designated by additions to the abbreviations. Both ab initio and semiempirical calculations treat the linear combination of orbitals by iterative computations that establish a self-consistent electrical field (SCF) and minimize the energy of the system. The minimum-energy combination is taken to describe the molecule. [Pg.25]

We have extended the linear combination of Gaussian-type orbitals local-density functional approach to calculate the total energies and electronic structures of helical chain polymers[35]. This method was originally developed for molecular systems[36-40], and extended to two-dimensionally periodic sys-tems[41,42] and chain polymers[34j. The one-electron wavefunctions here are constructed from a linear combination of Bloch functions c>>, which are in turn constructed from a linear combination of nuclear-centered Gaussian-type orbitals Xylr) (in ihis case, products of Gaussians and the real solid spherical harmonics). The one-electron density matrix is given by... [Pg.42]

There are two types of basis functions (also called Atomic Orbitals, AO, although in general they are not solutions to an atomic Schrodinger equation) commonly used in electronic structure calculations Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). Slater type orbitals have die functional form... [Pg.150]

Godbout, N., Salahub, D. R., Andzelm, J., Wimmer, E., 1992, Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation , Can. J. Chem., 70, 560. [Pg.288]

Robin et al.162 investigated the photoelectron spectrum of unsubstituted cyclo-propenone and interpreted its results with the aid of Gaussian-type orbital calculations of double-zeta quality for the electronic ground state using the experimentally established133 geometry of cyclopropenone. [Pg.46]

The quantum mechanical polarizability is calculated using the DFT, with B3P86 (Becke s three-parameter functional [53] with the non-local correlation provided by Perdew [54]). The basis set used for the water molecules is 6-311 + +G. Because of the very diffuse nature of the anion F, the basis set used is the specially designed, and very extensive, fully uncontracted 14s 9p 6d 2f Gaussian-type orbitals [55]. All the QM calculations were made with the Gaussian98 program [56]. [Pg.144]

Ab initio calculations are based on first principles using molecular orbital (MO) calculations based on Gaussian functions. Combinations of Gaussian functions yield Slater-type orbitals (STOs), also called Slater determinants. STOs are mathematical functions closely related to exact solutions for the hydrogen atom. In their ultimate applications, ab initio methods would use Gaussian-type wave functions rather than STOs. The ab initio method assumes that from the point of view of the electrons the nuclei are stationary, whereas... [Pg.170]

Dahle, P., Helgaker, T., Jonsson, D., Taylor, RR. Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets applications to atoms and diatomics. Phys. Chem. Chem. Phys. 2007, 9, 3112-26. [Pg.147]

Almost all contemporary ab initio molecular electronic structure calculations employ basis sets of Gaussian-type functions in a pragmatic approach in which no error bounds are determined but the accuracy of a calculation is assessed by comparison with quantities derived from experiment[l] [2]. In this quasi-empirical[3] approach each basis set is calibrated [4] for the treatment of a particular range of atoms, for a particular range of properties, and for a particular range of methods. Molecular basis sets are almost invariably constructed from atomic basis sets. In 1960, Nesbet[5] pointed out that molecular basis sets containing only basis sets necessary to reach to atomic Hartree-Fock limit, the isotropic basis set, cannot possibly account for polarization in molecular interactions. Two approaches to the problem of constructing molecular basis sets can be identified ... [Pg.158]

Using the F ion as a prototype, the convergence of the many-body perturbation theory second-order energy component for negative ions is studied when a systematic procedure for the construction of even-tempered btisis sets of primitive Gaussian type functions is employed. Calculations are reported for sequences of even-tempered basis sets originally developed for neutral atoms and for basis sets containing supplementary diffuse functions. [Pg.283]

Fig. 14 A comparison of different approaches to describe the charge carrier mobility in a Gaussian-type hopping system as a function of the normalized concentration of the charge carriers, (a) Full curves are the result of effective medium calculations [100] while symbols are computer simulations [96], (b) Full curves are calculated using the variable range hopping concept [101], symbols are the computer simulations. From [100] with permission. Copyright (2007) by the American Institute of Physics... Fig. 14 A comparison of different approaches to describe the charge carrier mobility in a Gaussian-type hopping system as a function of the normalized concentration of the charge carriers, (a) Full curves are the result of effective medium calculations [100] while symbols are computer simulations [96], (b) Full curves are calculated using the variable range hopping concept [101], symbols are the computer simulations. From [100] with permission. Copyright (2007) by the American Institute of Physics...
Basis sets for use in practical Hartree-Fock, density functional, Moller-Plesset and configuration interaction calculations make use of Gaussian-type functions. Gaussian functions are closely related to exponential functions, which are of the form of exact solutions to the one-electron hydrogen atom, and comprise a polynomial in the Cartesian coordinates (x, y, z) followed by an exponential in r. Several series of Gaussian basis sets now have received widespread use and are thoroughly documented. A summary of all electron basis sets available in Spartan is provided in Table 3-1. Except for STO-3G and 3 -21G, any of these basis sets can be supplemented with additional polarization functions and/or with diffuse functions. It should be noted that minimal (STO-3G) and split-valence (3-2IG) basis sets, which lack polarization functions, are unsuitable for use with correlated models, in particular density functional, configuration interaction and Moller-Plesset models. Discussion is provided in Section II. [Pg.40]

A final point about basis functions concerns the way in which their radial parts are represented mathematically. The AOs, obtained from solutions of the Schrbdin-ger equation for one-electron atoms, fall-off exponentially with distance. Unfoitu-nately, if exponentials are used as basis functions, computing the integrals that are required for obtaining electron repulsion energies between electrons is mathematically very cumbersome. Perhaps the most important software development in wave function based calculations came from the realization by Frank Boys that it would be much easier and faster to compute electron repulsion integrals if Gaussian-type functions, rather than exponential functions, were used to represent AOs. [Pg.972]

A chromatography column of 10 mm i.d. and 100 mm height was packed with particles for gel chromatography. The interparticle void fraction e was 0.20. A small amount of a protein solution was applied to the column and elution performed in an isocratic manner with a mobile phase at a flow rate of 0.5 cm min. The distribution coefficient A of a protein was 0.7. An elution curve of the Gaussian type was obtained, and the peak width W was 1.30 cm . Calculate the Hs value of this column for this protein sample. [Pg.180]


See other pages where Gaussian-type calculations is mentioned: [Pg.252]    [Pg.240]    [Pg.309]    [Pg.466]    [Pg.252]    [Pg.297]    [Pg.320]    [Pg.220]    [Pg.116]    [Pg.261]    [Pg.70]    [Pg.138]    [Pg.164]    [Pg.5]    [Pg.52]    [Pg.53]    [Pg.162]    [Pg.108]    [Pg.133]    [Pg.133]    [Pg.137]    [Pg.307]    [Pg.12]    [Pg.342]    [Pg.374]    [Pg.129]    [Pg.13]    [Pg.155]    [Pg.17]    [Pg.309]   
See also in sourсe #XX -- [ Pg.1394 , Pg.1441 ]




SEARCH



Calculation types

Gaussian type

© 2024 chempedia.info