Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gases continued fluxes

This precipitation creates a permanent sink for the solute, promoting the continuous flux of the dissolved oxide in the melt film. On the other hand, the consumption of oxidant gas O2 by the formation of 0 and subsequent dissolution reaction at the melt/oxide interface creates the gradient for oxidant diffusion. Figure 11 shows a schematic plot of the gradients and transport processes within the melt film. [Pg.609]

Renewable carbon resources is a misnomer the earth s carbon is in a perpetual state of flux. Carbon is not consumed such that it is no longer available in any form. Reversible and irreversible chemical reactions occur in such a manner that the carbon cycle makes all forms of carbon, including fossil resources, renewable. It is simply a matter of time that makes one carbon from more renewable than another. If it is presumed that replacement does in fact occur, natural processes eventually will replenish depleted petroleum or natural gas deposits in several million years. Eixed carbon-containing materials that renew themselves often enough to make them continuously available in large quantities are needed to maintain and supplement energy suppHes biomass is a principal source of such carbon. [Pg.9]

Radial density gradients in FCC and other large-diameter pneumatic transfer risers reflect gas—soHd maldistributions and reduce product yields. Cold-flow units are used to measure the transverse catalyst profiles as functions of gas velocity, catalyst flux, and inlet design. Impacts of measured flow distributions have been evaluated using a simple four lump kinetic model and assuming dispersed catalyst clusters where all the reactions are assumed to occur coupled with a continuous gas phase. A 3 wt % conversion advantage is determined for injection feed around the riser circumference as compared with an axial injection design (28). [Pg.513]

External Dilute-Phase Upflow Cooler. The external ddute-phase upflow design (68) offers some control in the range of heat removal duties but generates relatively low heat-transfer coefficients [60—170 W/(m K)]- This design substantially increases the surface area requirement and thereby reduces the ultimate duty that can be achieved from a single bundle. In addition, poor mechanical rehabdity has been continuously experienced because of excessive erosion at the lower tube sheets as a result of the high catalyst fluxes and gas velocities imposed. [Pg.219]

Initial plume volume flux for dense gas dispersion, voliime/time Continuous release rate of material, mass/time Instantaneous release of material, mass Release duration, time T Absolute temperature, K... [Pg.2340]

AT is intended to include any and all of the effects of the sorption rate of monomer on the surface, steric arrangement of active species, the addition of the monomer to the live polymer chain, and any desorption needed to permit the chain to continue growing. We assume a steady state in which every mole of propylene that polymerizes is replaced by another mole entering the shell from the gas, so that all of the fluxes are equal to Ny gmol propylene reacted per second per liter of total reactor volume. The following set of equations relates the molar flux to each of the concentration driving forces. [Pg.202]

Semibatch Model "GASPP". The kinetics for a semibatch reactor are the simpler to model, in spite of the experimental challenges of operating a semibatch gas phase polymerization. Monomer is added continuously as needed to maintain a constant operating pressure, but nothing is removed from the reactor. All catalyst particles have the same age. Equations 3-11 are solved algebraically to supply the variables in equation 5, at the desired operating conditions. The polymerization flux, N, is summed over three-minute intervals from the startup to the desired residence time, t, in hours ... [Pg.204]

The total wet deposition flux consists of 2 contributory factors. The first derives from the continuous transfer of Hg to cloud water, described by chemistry models. There are 2 limiting factors 1) the uptake of gas phase Hg(0), which is regulated by the Hemy s corrstant and 2) the subsequent oxidation of Hg(0) to Hg(ll), which is governed by reaction rate constants and the irritial concentratiorrs of the oxidant species. The total flirx depends on the hquid water content of the cloud and the percentage of the droplets in the cloud that reach the Earth s surface. [Pg.25]

It should be noted that in a vapour phase the liquid layer on the surface of a sensitive element of the sensor (zinc oxide) must be sufficiently thin, so that it would not produce any influence on the diffusion flux of oxygen through this layer. Possible lack of the film continuity (the presence of voids) does not prevent determination of concentration of oxygen in the bulk of the cell by the vapour - gas method. In this case, one deals with a semi-dry method. On the contrary, the presence of a thick liquid layer causes considerable errors in measuring t, because of different distribution of oxygen in a system gas - liquid layer -semiconductor film (this distribution is close to that in the system semiconductor film - liquid), in addition to substantial slowing down of oxygen diffusion in such systems. [Pg.262]

In reality, the slip velocity may not be neglected (except perhaps in a microgravity environment). A drift flux model has therefore been introduced (Zuber and Findlay, 1965) which is an improvement of the homogeneous model. In the drift flux model for one-dimensional two-phase flow, equations of continuity, momentum, and energy are written for the mixture (in three equations). In addition, another continuity equation for one phase is also written, usually for the gas phase. To allow a slip velocity to take place between the two phases, a drift velocity, uGJ, or a diffusion velocity, uGM (gas velocity relative to the velocity of center of mass), is defined as... [Pg.199]

It is more convenient to use the enthalpy of the cold gas evaporating from the LHe in a continuous gas flow cryostat (Fig. 5.4). The flux and hence the temperature of the experiment can be regulated by a heater or a needle valve. [Pg.126]

The state of matter within these regions needs to be determined before the balance of energy and chemistry can be understood. Extreme photon fluxes break all chemical bonds, prevent molecule formation and ionise atoms but as the density of species increases the UV and far-UV photons are absorbed and molecules begin to form. Chemical reactions are, however, slow in the gas phase due to the low temperature, and molecules condense out on the surface of dust particles, perhaps forming ice grains. Once on the surface, molecules continue to be photoprocessed by the starlight as well as by the continual bombardment of cosmic rays. [Pg.121]

Dc is the characteristic source dimension for continuous releases of dense gases (length), q0 is the initial plume volume flux for dense gas dispersion (volume/time), and u is the wind speed at 10 m elevation (length/time). [Pg.196]

The second term on the right is the flux of A at the gas-liquid interface, NA(z = 0). Thus, the continuity equation may be written as... [Pg.605]

The simplest practicable approach considers the membrane as a continuous, nonporous phase in which water of hydration is dissolved.In such a scenario, which is based on concentrated solution theory, the sole thermodynamic variable for specifying the local state of the membrane is the water activity the relevant mechanism of water back-transport is diffusion in an activity gradient. However, pure diffusion models provide an incomplete description of the membrane response to changing external operation conditions, as explained in Section 6.6.2. They cannot predict the net water flux across a saturated membrane that results from applying a difference in total gas pressures between cathodic and anodic gas compartments. [Pg.398]


See other pages where Gases continued fluxes is mentioned: [Pg.120]    [Pg.31]    [Pg.288]    [Pg.114]    [Pg.341]    [Pg.342]    [Pg.343]    [Pg.347]    [Pg.430]    [Pg.414]    [Pg.322]    [Pg.1093]    [Pg.113]    [Pg.346]    [Pg.155]    [Pg.296]    [Pg.57]    [Pg.136]    [Pg.433]    [Pg.311]    [Pg.398]    [Pg.280]    [Pg.121]    [Pg.160]    [Pg.295]    [Pg.236]    [Pg.374]    [Pg.18]    [Pg.37]    [Pg.460]    [Pg.212]    [Pg.478]    [Pg.220]    [Pg.195]    [Pg.75]   


SEARCH



Gas continued

© 2024 chempedia.info