Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Furans 3-hydroxy- from

Furan Derivatives Catalytic processes used to obtain furan derivatives from carbohydrates and the catalytic routes from furan intermediates to chemicals and polymers have been reviewed by Moreau et al. [27]. Some of the main reactions are summarized in Fig. 3.2. From fructose or carbohydrates based on fructose (sucrose, inulin), the first transformation step is dehydration to 5-hydroxy methylfur-fural (HMF). Fructose dehydration at 165 °C was performed in the presence of... [Pg.61]

H. Cao, H.F. Jiang, X.S. Zhou, C.R. Qi, Y.G. Lin, J.Y. Wu, Q.M. Liang, CuO/CNTs-catalyzed heterogeneous process a convenient strategy to prepare furan derivatives from electron-deficient alkynes and a-hydroxy ketones. Green Chem. 14 (2012) 2710-2714. [Pg.42]

In 2002, Lo et al. found the catalytic formation of substimted furans 48 from the corresponding epoxyalkynes 47 via ruthenium-vinylidene complexes as key reactive intermediates (Scheme 21.21) [30]. This transformation is considered to be the ruthenium version of molybdenum-catalyzed reaction of Scheme 21.4. Varela-Fernandez et al. reported the ruthenium-catalyzed cycloaromatization of terminal alkynes bearing either a hydroxy or an amino group (49 and 51) into the corresponding benzofurans and indoles (50 and 52) (Scheme 21.22) [31]. At the same time, Nair et al. reported the same cycloaromatization by using a bifunctional ruthenium complex as a catalyst [32]. In both cases, ruthenium-vinylidene complexes were supposed to work as key reactive intermediates. [Pg.558]

Alkynyl)oxiranes also react with carbon nucleophiles to afford furan derivatives. Furanes of different types are obtained depending on the structure of the substrates. 7-Methyl-2-ethynyloxirane (95) reacts with acetoacetate to give the furan 97 by the elimination of formaldehyde from the cyclized product 96. The hydroxy ester of the alkylidenefuran 98 and the corresponding lactone 99 are obtained by the reaction of i-methyl-2-(2-propynyI)oxirane[40, 42]. [Pg.467]

The cyclic enol ether 255 from the functionalized 3-alkynoI 254 was converted into the furans 256 by the reaction of allyl chloride, and 257 by elimination of MeOH[132], The alkynes 258 and 260, which have two hydroxy groups at suitable positions, are converted into the cyclic acetals 259 and 261. Carcogran and frontalin have been prepared by this reaction[124]. [Pg.501]

Hydroxy-THISs react with electron-deficient alkynes to give nonisol-able adducts that extrude carbonyl sulfide, affording pyrroles (23). Compound 16 (X = 0) seems particularly reactive (Scheme 16) (25). The cycloaddition to benzyne yields isoindoles in low- yield. Further cyclo-addition between isoindole and benzyne leads to an iminoanthracene as the main product (Scheme 17). The cycloadducts derived from electron-deficient alkenes are stable (23, 25) unless highly strained. Thus the two adducts, 18a (R = H, R = COOMe) and 18b (R = COOMe, R = H), formed from 7, both extrude furan and COS under the reaction conditions producing the pyrroles (19. R = H or COOMe) (Scheme 18). Similarly, the cycloadduct formed between 16 (X = 0) and dimethylfumarate... [Pg.9]

Very little is known concerning the simple, monocyclic 3-hydroxy-furans (cf. reference 15). Both the oxo and hydroxy forms of the substituted 3-hydroxyfurans 26 and 27 (R = H, CcHn) have been isolated/ but the individual tautomers slowly undergo interconversion. The enol forms give a positive reaction with ferric chloride, react rapidly with bromine, and form a peroxide with oxygen. From chemical evidence, the benzo derivatives of 3-hydroxyfuran, 28 and 29, appear to exist predominantly in the oxo form, and this is further supported by ultraviolet spectral data. Stefanye and Howard- ... [Pg.6]

A stmple and general synthesis of 2,2,4,5-tetrasubstituted furan-3(2//)-ones from 4-hydroxyalk-2-ynones and alkyl halides via tandem CO, addition-elimination protocol is described <96S 1431>. Palladiuni-mediated intramolecular cyclization of substituted pentynoic adds offers a new route to y-arylidenebutyrolactones <96TL1429>. The first total synthesis of (-)-goniofupyrone 39 was reported. Constmction of the dioxabicyclo[4.3.0]nonenone skeleton was achieved by tosylation of an allylic hydroxy group, followed by exposure to TBAF-HF <96TL5389>. [Pg.131]

The ionization potentials, using mass spectrometry, for both 2-hydroxy-and 3-hydroxythiophenes have been compared with data for compounds derived from either tautomeric form in order to analyze the tautomeric composition.124 125 In the 2-hydroxy-substituted system the enol isomer could not be detected. Of the two possible unsaturated lactones the oc,/l-unsaturated form was the major isomer. In the 3-hydroxy-substituted case both the oxo form and the enol form are important. The position of the equilibrium was compared with those of the corresponding furan and sele-nophene systems for both isomers. [Pg.158]

The Cu(I)-catalyzed cyclization for the formation of ethyl ( )-tetrahydro-4-methylene-2-phenyl-3-(phenylsulfonyl)furan-3-carboxylate 82 has been accomplished starting from propargyl alcohol and ethyl 2-phenylsulfonyl cinnamate. Upon treatment with Pd(0) and phenylvinyl zinc chloride as shown in the following scheme, the methylenetetrahydrofuran 82 can be converted to a 2,3,4-trisubstituted 2,5-dihydrofuran. In this manner, a number of substituents (aryl, vinyl and alkyl) can be introduced to C4 <00EJO1711>. Moderate yields of 2-(a-substituted N-tosyIaminomethyl)-2,5-dihydrofurans can be realized when N-tosylimines are treated with a 4-hydroxy-cis-butenyl arsonium salt or a sulfonium salt in the presence of KOH in acetonitrile. The mechanism is believed to involve a new ylide cyclization process <00T2967>. [Pg.147]

When these cycloaddition reactions are carried out with alkynes, furan derivatives are formed. lodonium ylide 5, for instance, on photochemical reaction with alkynes 43, gives benzofurans 44 (86JOC3453) (Eq. 19). In a similar way, the iodonium ylide derived from 2-hydroxy-1,4-naphthoquinone undergoes a cycloaddition reaction with phenylacety-lene to yield benzofuran 45 (Scheme 16) (89LA167). [Pg.18]

Although not yet experimentally demonstrated, it is presumed that 9 undergoes a similar series of reactions that lead to 2-(2-hydroxy-acetyl)furan (13). This product has been isolated in low yield from treatment of both D-glucose and D-fructose with acid.5,40... [Pg.170]

From the base-catalyzed degradation of D-fructose (pH 8.0), Shaw and coworkers147 identified 18 compounds, none of which was (a) isomeric with the starting material, or (b) a simple dehydration product. Among the products, the hydroxy-2-butanones and 1-hydroxy-2-propanone (acetol) were shown to participate in forming the carbo-cyclic products identified, but the mechanism of their formation was not elucidated. Several furan derivatives were isolated, but no lactic acid was isolated. In a similar study but with weak acid,41 most of the products were formed by a combination of enolization and dehydration steps, with little fragmentation. [Pg.200]

Heats of adsorption measurements do not lead to very specific interpretation since the isosteric heat of adsorption (AH) arises from both nonspecific interactions, which occur in all cases of adsorption, and from specific interactions with the hydroxy groups nevertheless, valuable conclusions about the binding forces can be deduced. Saturated hydrocarbons, e.g., n-pentane, have a value of — AH of 8.0 kcal/mole, while saturated ethers have values of around 16 kcal/mole.14 Probably dispersion forces only are involved in the former case and additional specific interaction with the silanol-OH occurs in the second case. On graphite, where there is no specific interaction, the heats of adsorption of hydrocarbons and ethers are very similar.17 The heat of adsorption of furan (11 kcal/mole) is 5 kcal/mole less than that of tetrahydrofuran this again indicates the effect that delocalization of electrons by the double bonds has on the binding forces.14... [Pg.318]

Numerous furan and pyran derivatives, many of which originate from heat treatment of carbohydrates, largely determine the odor of processed foods. Of this group, 2,5-dimethyl-4-hydroxy-277-furan-3-one and maltols are used in fairly large quantities in flavors. The following compounds are used in relatively small amounts in flavor compositions ... [Pg.142]


See other pages where Furans 3-hydroxy- from is mentioned: [Pg.138]    [Pg.27]    [Pg.159]    [Pg.619]    [Pg.164]    [Pg.92]    [Pg.36]    [Pg.36]    [Pg.126]    [Pg.127]    [Pg.129]    [Pg.787]    [Pg.669]    [Pg.490]    [Pg.221]    [Pg.713]    [Pg.648]    [Pg.103]    [Pg.134]    [Pg.196]    [Pg.665]    [Pg.211]    [Pg.221]    [Pg.660]    [Pg.304]    [Pg.534]    [Pg.36]    [Pg.183]    [Pg.69]    [Pg.90]    [Pg.434]    [Pg.1029]    [Pg.1031]    [Pg.489]   


SEARCH



From furans

© 2024 chempedia.info