Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fructose properties

Fractional crystallization, 413 Freezing point lowering, 325, 393 Freon, 362 Frequency of light, 246 relation to wave length, 251 Fructose, 423 Fumaric acid, 428 properties, 308 structure, 316... [Pg.459]

In 1993, the di-D-fructose dianhydrides were summarized as being of little, if any, commercial importance. 73 However, a search of the literature reveals an appreciable number of patents issued since 1989 for the manufacture of these compounds. These include enzymic methods for the production of individual dianhydrides (Ref. 130) or methods of production of mixtures using anhydrous HF or pyridinium poly(hydrogen fluoride) (see Ref. 131). Most cite the di-D-fructose dianhydrides as low-calorie sweetening agents (Ref. 132), and some claim anti-cariogenic properties (Refs. 132 and 133). [Pg.233]

The raw materials from which di-D-fructose dianhydrides can be obtained in appreciable yield are readily available from comparatively inexpensive agricultural feedstocks. Thus, these compounds are attractive as chiral-starting materials for chemical synthesis. Their stability to acid and heat, and their relative rigidity, because of the conformational constraints covered here, are also features that might be exploited during syntheses.119 A series of variously substituted di-D-fructose dianhydrides has been prepared,119 starting from 6,6 -dideoxy-6,6 -di-halosucroses. The properties of these and other derivatives of di-D-fructose dianhydrides are summarized in Tables XIV-XX. Two of these derivatives, 48 and 56, exhibit thermotropic liquid-crystal properties.119... [Pg.234]

Phosphofructokinase (PFK) is a key regulatory enzyme of glycolysis that catalyzes the conversion of fructose-6-phosphate to fructose-1,6-diphosphate. The active PFK enzyme is a homo- or heterotetrameric enzyme with a molecular weight of 340,000. Three types of subunits, muscle type (M), liver type (L), and fibroblast (F) or platelet (P) type, exist in human tissues. Human muscle and liver PFKs consist of homotetramers (M4 and L4), whereas red blood cell PFK consists of five tetramers (M4, M3L, M2L2, ML3, and L4). Each isoform is unique with respect to affinity for the substrate fructose-6-phosphate and ATP and modulation by effectors such as citrate, ATP, cAMP, and fructose-2,6-diphosphate. M-type PFK has greater affinity for fructose-6-phosphate than the other isozymes. AMP and fructose-2,6-diphosphate facilitate fructose-6-phosphate binding mainly of L-type PFK, whereas P-type PFK has intermediate properties. [Pg.7]

In 1886, Brown11 discovered an organism which formed extremely tough membranes when cultivated m suitable nutrient solutions containing carbohydrates such as D-fructose, D-mannitol or D-glucose ethanol, sucrose or starch did not support membrane formation by this organism which Brown called Bacterium xylinum ) (Acetobacter xylinum). The membranes were readily soluble in cuprammonium hydroxide solution and yielded a dextrorotatory sugar upon acid hydrolysis. These properties and the results of combustion analysis led him to believe that the membrane was cellulose. [Pg.223]

Inulin is therefore made up of D-fructofuranose residues joined through carbons 1 and 2. The properties of inulin point to a symmetrical arrangement and hence carbon 2 of each D-fructose residue is joined to carbon 1 of an adjacent one. [Pg.276]

Secalin. Secalin has been isolated from the stems of unripe rye.46,68 Schlubach and Bandmann69 studied its structure. The great difficulty they encountered in obtaining the polysaccharide and its acetate in homogeneous form made the determination of physical properties uncertain. However, by hydrolysis of the methyl derivative, they obtained, after separation by means of the /3-naphthoates, tetramethyl-, trimethyl-, and dimethyl-D-fructoses in the proportions of 1 2 1. The trimethyl-D-fructose was identified as 1,3,4-trimethyl-D-fructofura-nose by its melting point and specific rotation. [Pg.280]

D-fructose (4370 M"1) > D-galactose (276 M"1) > D-glucose (110 M"1). From these results, it was confirmed that the PMBV/PVA hydrogel was formed under biological conditions, and that the reversible properties of the hydrogel corresponded to the formation of a complex between the phenylboronic acid group in PMBV and the diol moiety in PVA. [Pg.151]

Phosphoenolpyruvate carboxykinase (PEPCK) deficiency is distinctly rare and even more devastating clinically than deficiencies of glucose-6-phosphatase or fructose-1,6-bisphosphatase. PEPCK activity is almost equally distributed between a cytosolic form and a mitochondrial form. These two forms have similar molecular weights but differ by their kinetic and immunochemical properties. The cytosolic activity is responsive to fasting and various hormonal stimuli. Hypoglycemia is severe and intractable in the absence of PEPCK [12]. A young child with cytosolic PEPCK deficiency had severe cerebral atrophy, optic atrophy and fatty infiltration of liver and kidney. [Pg.705]

Wungtanagom, R. and Schmidt, S.J. 2001. Thermodynamic properties and kinetics of the physical aging of amorphous glucose, fructose, and their mixture. J. Therm. Anal. Calorim. 65, 9-35. [Pg.102]

Before glycolysis from glucose can begin, glucose has to be transported into the ceU. This is achieved by a transporter protein, in the plasma membrane (Chapter 5). There are five different types of glucose transporter, all encoded by separate genes. The proteins have slightly different properties, different tissue distribution and somewhat different roles in these tissues. Their roles are briefly described in Table 6.1. A sixth transporter is specific for fructose it is... [Pg.99]

Properties of EthanolIc Fructose Solutions. Published information on the properties of aqueous ethanolic fructose solution is very limited. As a result, solubility data from 25 to 60 °C was measured (Figure 1) and will be published separately. The equilibrium fructose/water mass ratio for zero alcohol, ranges from over 4 at 25 C to over 8 at 60 C (7,8). It can be seen that reasonable yields will only result with high alcohol additions (E/W at least 2). This is the range used in this study. Aqueous ethanolic solutions have a wide range of viscosities. These were measured at operating conditions using a Rheomat concentric cylinder viscometer. [Pg.200]


See other pages where Fructose properties is mentioned: [Pg.376]    [Pg.148]    [Pg.615]    [Pg.688]    [Pg.221]    [Pg.223]    [Pg.444]    [Pg.291]    [Pg.283]    [Pg.190]    [Pg.280]    [Pg.72]    [Pg.150]    [Pg.81]    [Pg.91]    [Pg.106]    [Pg.268]    [Pg.185]    [Pg.7]    [Pg.104]    [Pg.107]    [Pg.140]    [Pg.207]    [Pg.213]    [Pg.383]    [Pg.51]    [Pg.59]    [Pg.60]    [Pg.137]    [Pg.63]    [Pg.4]    [Pg.218]    [Pg.43]    [Pg.218]    [Pg.193]    [Pg.365]   
See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.258 , Pg.259 , Pg.260 , Pg.261 ]




SEARCH



Fructose physical properties

Fructose structure- properties relationships

Fructose-1,6-diphosphatase (cont purification and properties

© 2024 chempedia.info