Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free-radical polymerization, flow

The study of the peak temperature sensitivity to the reactor operating parameters and the construction of sensitivity boundary curves for stable reactor operation were previously reported ( l). This paper presents a computer study on conceptual relationships between the conversion-product properties and the reactor operating parameters in a plug flow tubular reactor of free radical polymerization. In particular, a contour map of conversion-molecular weight relationships in a reactor of fixed size is presented and the sensitivity of its relationship to the choice of initiator system, solvent system and heat transfer system are discussed. [Pg.221]

Continuous-flow stirred tank reactors are widely used for free-radical polymerizations. They have two main advantages the solvent or monomer can be boiled to remove the heat of polymerization, and fairly narrow molecular weight and copolymer composition distributions can be achieved. Stirred tanks or... [Pg.492]

For a free-radical polymerization and a condensation polymerization process, explain why the molar mass distribution of the polymer product will be different depending on whether a mixed-flow or a plug-flow reactor is used. What will be the difference in the distribution of molar mass ... [Pg.96]

Another system under investigation is the iron/ chromium redox flow battery (Fe/Cr RFB) developed by NASA. The performance requirements of the membrane for Fe/Cr RFB are severe. The membrane must readily permit the passage of chloride ions, but should not allow any mixing of the chromium and iron ions. An anionic permselective membrane CDIL-AA5-LC-397, developed by Ionics, Inc., performed well in this system. ° It was prepared by a free radical polymerization of vinylbenzyl chloride and dimethylaminoethyl methacrylate in a 1 1 molar ratio. One major issue with the anionic membranes was its increase in resistance during the time it was exposed to a ferric chloride solution. The resistance increase termed fouling is related to the ability of the ferric ion to form ferric chloride complexes, which are not electrically repelled by the anionic membrane. An experiment by Arnold and Assink indicated that... [Pg.218]

A plug flow or tubular flow reactor is tubular in shape with a high length/diameter (1/d) ratio. In an ideal case (as in the case of an ideal gas, this only approached reality) flow is orderly with no axial diffusion and no difference in velocity of any members in the tube. Thus, the time a particular material remains within the tube is the same as that for any other material. We can derive relationships for such an ideal situation for a first-order reaction. One that relates extent of conversion with mean residence time, t, for free radical polymerizations is ... [Pg.718]

Which is better for isothermal chemical reactions, pressure driven flow or drag flow between flat plates Assume laminar flow with first-order chemical reaction and compare systems with the same values for the slit width (2Y=H), length, mean velocity, and reaction rate constant. Free-radical polymerizations tend to be highly exothermic. The following data are representative of the thermal (i.e., spontaneous) polymerization of styrene ... [Pg.307]

The radical polymerization in aqueous solution of a series of monomers—e.g., vinyl esters, acrylic and methacrylic acids, amides, nitriles, and esters, dicarboxylic acids, and butadiene—have been studied in a flow system using ESR spectrometry. Monomer and polymer radicals have been identified from their ESR spectra. fi-Coupling constants of vinyl ester radicals are low (12-13 gauss) and independent of temperature, tentatively indicating that the /3-CH2 group is locked with respect to the a-carbon group. In copolymerization studies, the low reactivity of vinyl acetate has been confirmed, and increasing reactivity for maleic acid, acrylic acid, acrylonitrile, and fumaric acid in this order has been established by quantitative evaluation of the ESR spectra. This method offers a new approach to studies of free radical polymerization. [Pg.142]

Numerical simulations of styrene free-radical polymerization in micro-flow systems have been reported. The simulations were carried out for three model devices, namely, an interdigital multilamination micromixer, a Superfocus interdigital micromixer, and a simple T-junction. The simulation method used allows the simultaneous solving of partial differential equations resulting from the hydrodynamics, and thermal and mass transfer (convection, diffusion and chemical reaction). [Pg.196]

A numerical study of the free-radical polymerization of styrene (Scheme 6.15) compared the behavior of an interdigital micromixer with a T-junction and a straight tube [37, 48], The diffusion coefficient of the reactive species was varied to simulate the viscosity increase during a polymerization. The performance of the polymerization turned out to be largely dependent on the radial Peclet number. This dimensionless number is defined as the ratio of the characteristic time of diffusion in the direction perpendicular to the main flow to the characteristic time of convection in the flow direction (i.e., the mean residence time) and, therefore, is directly proportional to the characteristic length of the reactor. [Pg.122]

In a quite different but very important industrial area, free-radical polymerizations have made great inroads In the optimization of the desired commercial properties of impact-modified poly(vinyl chloride) (PVC). In a most sophisticated variation, grafted impact modifiers based on the quaterpolymerization of acrylic esters, butadiene, styrene, and acrylonitrile have been produced and almost precisely match the refractive index of PVC. The blending of the Impact modifier with PVC yields a completely clear polymer suitable for shampoo bottles and food containers. In addition to excellent clarity these polymers have extremely good impact strength combined with improved fabricability by flow molding equipment. [Pg.155]

Solution polymerization is of limited commercial utihty in free-radical polymerization but finds ready applications when the end use of the polymer requires a solution, as in certain adhesives and coating processes [i.e., poly(viityl acetate) to be converted to poly(viityl alcohol) and some acryhc ester finishes]. Solution polymerization is used widely in ionic and coordination polymerization. High-density polyethylene, poly butadiene, and butyl rubber are produced this way. Table 10.2 shows the diversity of polymers produced by solution polymerization, while Figure 10.2 is the flow diagram for the solution polymerization of vinyl acetate. [Pg.261]

Free-Radical Polymerization Using Flow Microreactor Systems... [Pg.21]

Fig. 20 Flow microreactor system for the free-radical polymerization initialed by AIBN and relative rate of the polymerization in the flow microreactor. M T-shaped micromixer Rl, R2 microtuhe reactors... Fig. 20 Flow microreactor system for the free-radical polymerization initialed by AIBN and relative rate of the polymerization in the flow microreactor. M T-shaped micromixer Rl, R2 microtuhe reactors...

See other pages where Free-radical polymerization, flow is mentioned: [Pg.178]    [Pg.517]    [Pg.14]    [Pg.337]    [Pg.182]    [Pg.204]    [Pg.21]    [Pg.90]    [Pg.213]    [Pg.115]    [Pg.7]    [Pg.7]    [Pg.83]    [Pg.227]    [Pg.205]    [Pg.26]    [Pg.44]    [Pg.213]    [Pg.84]    [Pg.137]    [Pg.129]    [Pg.326]    [Pg.587]    [Pg.369]    [Pg.517]    [Pg.26]    [Pg.110]    [Pg.492]    [Pg.194]    [Pg.517]    [Pg.291]    [Pg.330]    [Pg.136]    [Pg.99]    [Pg.21]    [Pg.21]   


SEARCH



FREE-FLOWING

Free-flow

Polymerization free radical

© 2024 chempedia.info