Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free-radical chain polymerisation mechanism

Interesting research on the dynamic mechanical and thermal properties of fire-retardant high-impact polystyrene (HIPS) is published by Chang and co-workers [19]. HIPS may be produced by the free-radical chain polymerisation of styrene in the presence of an unsaturated elastomer. The authors showed that the melting point of the additive in relation to the processing temperature of the thermoplastics and the compatibility of the additive with the polymer phases are the two important variables governing the interaction of additive with polymer matrix. [Pg.206]

Most emulsion polymerisations are free radical processes (318). There are several steps in the free radical polymerisation mechanism initiation (324), propagation and termination (324, 377, 399). In the first step, an initiator compound generates free radicals by thermal decomposition. The initiator decomposition rate is described by an Arrhenius-type equation containing a decomposition constant ( j) that is the reciprocal of the initiator half-life (Ph). The free radicals initiate polymerisation by reaction with a proximate monomer molecule. This event is the start of a new polymer chain. Because initiator molecules constantly decompose to form radicals, new polymer chains are also constantly formed. The initiated monomeric molecules contain an active free radical end group. [Pg.5]

The photoinduced addition of a thiol (RSH) to an olefinic double bond has been used to produce polymer networks by taking multi-functional monomers [37-44]. The thiol-ene polymerisation proceeds by a step growth addition mechanism which is propagated by a free radical, chain transfer reaction involving the thiyl radical (RS ). The initial thiyl radicals can be readily generated by UV-irradiation of a thiol in the presence of a radical-type photoinitiator. The overall reaction process can be schematically represented as follows ... [Pg.312]

In the case of mechanism (6) there are materials available which completely prevent chain growth by reacting preferentially with free radicals formed to produce a stable product. These materials are known as inhibitors and include quinone, hydroquinone and tertiary butylcatechol. These materials are of particular value in preventing the premature polymerisation of monomer whilst in storage, or even during manufacture. [Pg.27]

Mention may finally be made of graft polymers derived from natural rubber which have been the subject of intensive investigation but which have not achieved commercial significance. It has been found that natural rubber is an efficient chain transfer agent for free-radical polymerisation and that grafting appears to occur by the mechanism shown in Figure 30.8. [Pg.865]

Chain polymerisation typically consists of these three phases, namely initiation, propagation, and termination. Because the free-radical route to chain polymerisation is the most important, both in terms of versatility and in terms of tonnage of commercial polymer produced annually, this is the mechanism that will be considered first and in the most detail. [Pg.24]

Chain polymerisation involves three major steps (i.e., initiation, propagation and termination). This process of chain polymerisation can be brought about by a free radical, ionic or coordination mechanism. [Pg.7]

In the presence of an organic peroxide Initiator, the alkenes and their derivatives undergo addition polymerisation or chain growth polymerisation through a free radical mechanism. Polythene, teflon, orlon, etc. are formed by addition polymerisation of an appropriate alkene or Its derivative. Condensation poiymerisation reactions are... [Pg.145]

The reaction model assumed is one in which free-radical polymerisation is compartmentalised within a fixed number of reaction loci, all of which have similar volumes. As has been pointed out above, new radicals are generated in the external phase only. No nucleation of new reaction loci occurs as polymerisation proceeds, and the number of loci is not reduced by processes such as particle agglomeration. Radicals enter reaction loci from the external phase at a constant rate (which in certain cases may be zero), and thus the rate of acquisition of radicals by a single locus is kinetic-ally of zero order with respect to the concentration of radicals within the locus. Once a radical enters a reaction locus, it initiates a chain polymerisation reaction which continues until the activity of the radical within the locus is lost. Polymerisation is assumed to occur almost exclusively within the reaction loci, because the solubility of the monomer in the external phase is assumed to be low. The volumes of the reaction loci are presumed not to increase greatly as a consequence of polymerisation. Two classes of mechanism are in general available whereby the activity of radicals can be lost from reaction loci ... [Pg.434]

The chain length in free radical polymerisations is usually lower than would be expected from the mechanism of termination. The reason for this discrepancy is that the growing polymer chain can transfer the radical to other species, leading to termination of one chain, and thus generating a new radical that will react further. The following transfer mechanisms may occur ... [Pg.26]

Within the framework of this concept, initiation of polymerisation initially leads to accnmnlation of the number of propagating chains and makes the dependence of the nnmber of chains more profound. On the contrary, crosslinking reduces the number of chains, and, at the end of the process, the quantity dN/dt decreases to zero. This approach makes it possible to take into account the unsteady character of the polymerisation. However, becanse the mechanisms involved in the propagation of polylignol chains [3] are markedly different from the classical mechanism of free radical polymerisation, this variant hardly pertains to lignin formation. [Pg.53]

Chain polymerisation can be initiated by free radicals generated through different mechanisms. Free radicals are generally very unstable and reactive species thus, they can easily react with the tt electrons of carbon=carbon double bonds, leading to the bonds opening and starting chain polymerisation. [Pg.59]

Figure 5.4 A tentative reaction mechanism for formation of carboxyl-terminated poly(2-ethyl hexyl acrylate) (CTPEHA) from free radical polymerisation of EHA in the presence of 4, 4 -azobis (4-cyanovaleric acid) (ABCVA) as a free radical initiator and dithiodiglycolic acid (DTDGA) as a chain transfer agent. (P = nM ) Reprinted with permission from D. Ratna, A.K. Banthia and P.C. Dtb, Journal of Applied Polymer Science, 2000, 78, 716. 2000, John Wiley and Sons Publishers... Figure 5.4 A tentative reaction mechanism for formation of carboxyl-terminated poly(2-ethyl hexyl acrylate) (CTPEHA) from free radical polymerisation of EHA in the presence of 4, 4 -azobis (4-cyanovaleric acid) (ABCVA) as a free radical initiator and dithiodiglycolic acid (DTDGA) as a chain transfer agent. (P = nM ) Reprinted with permission from D. Ratna, A.K. Banthia and P.C. Dtb, Journal of Applied Polymer Science, 2000, 78, 716. 2000, John Wiley and Sons Publishers...
In this type of polymerisation an initiating molecule is required so that it can attack a monomer molecule to start the polymerisation. This initiating molecule may be a radical, anion or cation. Chain growth polymerisation is initiated by free-radical, anion or cation proceeded by three steps initiation, propagation and termination. The chemical nature of the substituent group determines the mechanism. [Pg.173]


See other pages where Free-radical chain polymerisation mechanism is mentioned: [Pg.40]    [Pg.108]    [Pg.34]    [Pg.315]    [Pg.384]    [Pg.274]    [Pg.23]    [Pg.49]    [Pg.211]    [Pg.34]    [Pg.315]    [Pg.384]    [Pg.346]    [Pg.413]    [Pg.199]    [Pg.28]    [Pg.181]    [Pg.13]    [Pg.140]    [Pg.297]    [Pg.91]    [Pg.123]    [Pg.245]    [Pg.304]    [Pg.34]    [Pg.315]    [Pg.384]    [Pg.243]    [Pg.190]    [Pg.21]   
See also in sourсe #XX -- [ Pg.44 , Pg.45 ]




SEARCH



Chain polymerisations

Chain radical

Free chains

Free mechanism

Free radical mechanism

Free radicals radical chains

Free-radical chain

Free-radical chain mechanism

Mechanism radical chain

Polymerisation free radical

Polymerisation radical

Radical mechanism

© 2024 chempedia.info