Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Voltammetry Fourier transform

Fourier transform voltammetry — Analysis of any AC or transient response using (fast) Fourier transformation (FFT) and inverse (fast) Fourier transformation (IFFT) to convert time domain data to the frequency domain data and then (often) back to time domain data but separated into DC and individual frequency components [i-ii]. See also - Fourier transformation, AC voltamme-... [Pg.278]

Tan, Y., Stevenson, G.P., Baker, R.E. et al. (2009) Designer based Fourier transformed voltammetry A multi-frequency, variable ampbtude, sinusoidal waveform. Journal of Electroanalyti-cal Chemistry, 634, 11-21. [Pg.47]

The monotonic increase of immobilized material vith the number of deposition cycles in the LbL technique is vhat allo vs control over film thickness on the nanometric scale. Eilm growth in LbL has been very well characterized by several complementary experimental techniques such as UV-visible spectroscopy [66, 67], quartz crystal microbalance (QCM) [68-70], X-ray [63] and neutron reflectometry [3], Fourier transform infrared spectroscopy (ETIR) [71], ellipsometry [68-70], cyclic voltammetry (CV) [67, 72], electrochemical impedance spectroscopy (EIS) [73], -potential [74] and so on. The complement of these techniques can be appreciated, for example, in the integrated charge in cyclic voltammetry experiments or the redox capacitance in EIS for redox PEMs The charge or redox capacitance is not necessarily that expected for the complete oxidation/reduction of all the redox-active groups that can be estimated by other techniques because of the experimental timescale and charge-transport limitations. [Pg.64]

Scheme 3 accounts for the various products formed, and it is consistent with known transformations in organometallic chemistry. In the first step, CO2 is reduced in a proton-coupled two-electron process to form adsorbed CO. That CO is an intermediate in the reduction of CO2 to hydrocarbons is supported by the following observations. (1) Reduction of CO at copper electrodes under the same conditions gives a similar distribution of hydrocarbon products. Reduction of formate, on the other hand, gave no hydrocarbon products [98, 102]. (2) CO on the electrode surface could be detected by cyclic voltammetry measurements. Fourier transform... [Pg.219]

V(IV) complexes that are coordinated by six sulfur donor atoms are also known. For example, [AsPh4]2[V(mnt)3] (mnt = maleonitriledithiolate) displays three redox features on cyclic voltammetry, which correspond to the reversible V(V/IV), V(IV/III), and quasireversible V(III/II) couples at 0.17, —0.87, and —2.12 V versus Cp2Fe/CH2Cl2 [55]. The surface normalized incident Fourier transform infrared spectroscopy (SNIFTIRS) spectroelectro-chemical technique was used to determine that the extent of n bonding of the mnt ligand increases as the metal s oxidation state is lowered through examination of the v(CN) frequencies in the various oxidation states. This technique was particularly effective in the determination of the spectral features ofthe short-lived V(II) species. [Pg.368]

The electrodes modified by hexacyano-ferrates compounds were also used as voltammetric sensors [409-412]. The cadmium hexacyanoferrate-based composite ion-sensitive electrode for voltammetry was explored by Scholz and coworkers [409]. The potential of such electrode depends linearly on the logarithm of concentration of alkali and alkaline-earth metals ions in the solutions. Bo and fin have studied [410] Prussian blue (PB)/Pt modified electrode in GdGh electrolyte by cyclic voltammetry and in situ Fourier transform IR spectroscopy (FTIR) spectro-electrochemistry. Cadmium hexacyanofer-rates were formed on a PB film. [Pg.794]

Fast Fourier transform instrumentation has been shown to be advantageous, both in the analytical and kinetic applications of voltammetry, for example, on Cd and Pb redox systems [43]. Active/passive transition for the Pb(Hg)/PbCl2 system has been studied using digital simulation [44]. [Pg.807]

A series of SAMs formed on Au from mono- and dithiol conjugated aromatic molecules was characterized by cyclic voltammetry, grazing incidence Fourier transform infrared spectroscopy, contact angle measurement, and ellipsometry.43 The analyses indicated that the molecular orientation of conjugated phenylene- and thophene-based dithiols became less tilted with respect to the surface normal as the chain length of the organic molecules increased. [Pg.85]

Owing to its stability, solubility, and highly reproducible oxidation behavior, ferrocene has long been used as an electrochemical standard in nonaqueous solvents. Not surprisingly, the electron-donor or -acceptor properties of ring substituents in ferrocenes and other metallocenes have been repeatedly evaluated with electrochemical techniques. Measurements have been obtained using polarography,150 cyclic voltammetry (CV),151 chronopotentiometry,152 photoelectron spectroscopy, 53 and Fourier transform ion cyclotron resonance mass spectrometry.154 Extensive compilations of such data are available.155 156 Historically, variations of oxidation potentials have been discussed almost solely in terms of the... [Pg.149]

Cyclic staircase voltammetry — Cyclic voltammetry using a staircase waveform (instead of a constant dV / d( ). The current response will be a series of transients which are measured by Fourier transform [i] or by sampling near the end of each (staircase) step [ii] thereby, in principle, eliminating or at least minimizing the - doublelayer charging component. The responses are similar to... [Pg.132]

In electrochemistry, Fourier transformation is usually applied to the current resulting when a periodic (often sine-wave or square-wave) voltage is imposed on a cell. This may be the only signal applied, as in -> impedance spectroscopy or the periodic voltage may modulate an aperiodic ( DC ) potential as in -> AC voltammetry or... [Pg.278]

From the experimental standpoint, the use of a.c. techniques offers many advantages. Sensitivity is much higher than in d.c. measurements, since phase-sensitive detection can be used and very small probe signals can be employed ( 5mV). The technique is therefore a truly equilibrium one, unlike cyclic voltammetry. An alternative approach to the commonly used sinusoidal signal superimposed on the selected d.c. potential is to use a potential step and to employ Laplace transform methods. Instrumentally, this is rather more demanding and the advantages are not clear [51]. Fourier transform methods have also been considered and their use will have advantages in terms of the time-scale for an experiment, especially at very low frequencies. [Pg.93]

Metal oxide and hydroxide systems serve many functions, including roles as pigments, in mineralogy, and also in catalysis. The classic techniques used in such investigations have included diffraction (especially X-ray diffraction XRD), thermal analysis, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy (see also Chapters 2 and 4). Until the introduction of voltammetry in the analysis of immobilized microparticles, electrochemical studies had been confined to solid electrolyte cells (Chapter 12), normally functioning at elevated temperatures. Unfortunately, these studies proved to be inapplicable for analytical characterization, and consequently a series of systematic studies was undertaken using immobilized microparticles of iron oxides and oxide-hydrates (for reviews, see... [Pg.213]


See other pages where Voltammetry Fourier transform is mentioned: [Pg.1]    [Pg.634]    [Pg.698]    [Pg.745]    [Pg.62]    [Pg.1]    [Pg.634]    [Pg.698]    [Pg.56]    [Pg.1]    [Pg.634]    [Pg.698]    [Pg.745]    [Pg.62]    [Pg.1]    [Pg.634]    [Pg.698]    [Pg.56]    [Pg.224]    [Pg.904]    [Pg.602]    [Pg.169]    [Pg.104]    [Pg.151]    [Pg.186]    [Pg.221]    [Pg.206]    [Pg.135]    [Pg.6473]    [Pg.292]    [Pg.198]    [Pg.552]    [Pg.981]    [Pg.9]    [Pg.276]    [Pg.204]   
See also in sourсe #XX -- [ Pg.62 , Pg.162 , Pg.335 ]




SEARCH



© 2024 chempedia.info