Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform time-domain interferometry

The previous discussions of the signal are nicely illustrated by an extremely simple model analysis using real fields and signals for two Lorenzian resonances at frequencies a and b. The sample is irradiated with two very short pulses whose spectra are flat. The real generated field from the sample is the real part of Eq. (21) or Eq. (33) with T set equal to zero for convenience since is in any case a multiplicative factor. In time-domain interferometry, this is measured directly along the indicated time axes as described above. In spectral interferometry the real generated field along with a real local oscillator field, delayed by time d, is dispersed (i.e., Fourier-transformed) by a monochromator, then squared by the detection to yield a spectrum on the array detector at each value of t ... [Pg.27]

In spectral interferometry, the interference in the spectral domain is exploited. The spectral modulation period is essentially determined by a time delay. This is at the heart of Fourier transform infrared spectrometers (FTIRs). [Pg.637]

We shall conclude this chapter with a few speculative remarks on possible future developments of nonlinear IR spectroscopy on peptides and proteins. Up to now, we have demonstrated a detailed relationship between the known structure of a few model peptides and the excitonic system of coupled amide I vibrations and have proven the correctness of the excitonic coupling model (at least in principle). We have demonstrated two realizations of 2D-IR spectroscopy a frequency domain (incoherent) technique (Section IV.C) and a form of semi-impulsive method (Section IV.E), which from the experimental viewpoint is extremely simple. Other 2D methods, proposed recently by Mukamel and coworkers (47), would not pose any additional experimental difficulty. In the case of NMR, time domain Fourier transform (FT) methods have proven to be more sensitive by far as a result of the multiplex advantage, which compensates for the small population differences of spin transitions at room temperature. It was recently demonstrated that FT methods are just as advantageous in the infrared regime, although one has to measure electric fields rather than intensities, which cannot be done directly by an electric field detector but requires heterodyned echoes or spectral interferometry (146). Future work will have to explore which experimental technique is most powerful and reliable. [Pg.348]

Often in an experiment it is possible to eliminate the contributions from the two power spectra leaving only the interference term. It is only this interference term that is dependent on phase and phase fluctuations. Note that for two identical pulses the signal is simply proportional to 2 cos [cox /2], which is a series of peaks in the frequency domain separated by 2/cx cm. Thus a x = 1 ps delay yields a peak separation of 67 cm In general the peak separations in the frequency domain are not independent of frequency and instead depend on the spectral phase difference at each frequency. Therefore spectral interferometry presents a method by which to determine the phase differences of two pulses. When the pulses are the same, we can use spectral interferometry to determine their time separations. The inverse Fourier transforms of the first two contributions to the spectrogram in Eq. (18) peak at f = 0 whereas the cross term peaks at t = x. Therefore Fourier transformation of S (a) can permit a separation of the cross term from the power spectra of the signal and reference fields [72]. [Pg.13]

The technique of interferometry can also )held information about a range of frequencies, and using the mathematical technique of Fourier transformation, the interferogram, which is a time-domain representation, may be converted into a frequency-domain spectrum. [Pg.202]


See other pages where Fourier transform time-domain interferometry is mentioned: [Pg.366]    [Pg.366]    [Pg.100]    [Pg.190]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Fourier time domain

Fourier transform time domains

Time domain

© 2024 chempedia.info