Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform infrared-reflectance transmission microscopy

Although they may be part of a catalyst testing [1-3] programme, investigations focused on revealing the reaction mechanism, such as in-situ Fourier transform infrared (FTIR) in transmission or reflection mode, nuclear magnetic resonance (NMR), X-ray diffraction (XRD), X-ray absorption fine-structure spectroscopy (EXAFS), X-ray photoelectron spectroscopy (XPS), electron microscopy (EM), electron spin resonance (ESR), and UV-visible (UV-vis) and the reaction cells used are not included. For the correct interpretation of the results, however, this chapter may also provide a worthwhile guide. [Pg.384]

The apparatus used for IR microscopy is a Fourier-transform infrared (FTIR) spectrometer coupled on-line with an optical microscope. The microscope serves to observe the sample in white light at significant magnification for the purpose of determining its morphology, as well as to select the area for analysis. The spectrometer, on the other hand, enables study of the sample by transmission or reflection measurement for the purpose of determining the chemical composition. It also provides information about the microstructure and optical properties (orientation) of the sample. It is possible to apply polarised light both in the observation of the sample and in spectrometric measurements. [Pg.288]

Altered surfaces have been inferred from solution chemistry measurements (e.g., Chou and Wollast, 1984, 1985) and from spectroscopic measurements of altered surfaces, using such techniques as secondary ion mass spectrometry (for altered layers that are several tens of nm thick (e.g., Schweda et al, 1997), Auger electron spectroscopy (layers <10 nm thick (e.g., Hochella, 1988), XPS (layers <10 nm thick (e.g., Hochella, 1988 Muir et al, 1990), transmission electron microscopy (TEM, e.g., Casey et al, 1989b), Raman spectroscopy (e.g.. Gout et al, 1997), Fourier transform infrared spectroscopy (e.g., Hamilton et al, 2001), in situ high-resolution X-ray reflectivity (Farquhar et al, 1999b Fenter et al, 2003), nuclear magnetic resonance (Tsomaia et al, 2003), and other spectroscopies (e.g., Hellmann et al, 1997). [Pg.2337]

Due to the fundamental importance of the adsorbed protein film, many methods have been used to characterize its nature. These methods include ellipsometry (3,A), Fourier transform infrared spectroscopy (FTIR) (5,6), multiple attenuated internal reflection spectroscopy (MAIR) (7,8) immunological labeling techniques (9), radioisotope labeled binding studies (j ), calorimetric adsorption studies (jj ), circular dichroism spectroscopy (CDS) (12), electrophoresis (j ), electron spectroscopy for chemical analysis (ESCA) (1 ), scanning electron microscopy (SEM) (15,16,9), and transmission electron microscopy (TEM) (17-19). [Pg.49]

Commonly used spectroscopic or analytical techniques for characterizing surfaces and coating layers on porous silicon are Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, energy dispersive X-ray spectrometry, fluorescence spectroscopy, UV-Vis absorption/reflectance spectroscopy, thin film optical interference spectroscopy, impedance spectroscopy, optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, ellipsometry, nitrogen adsorption/desorp-tion analysis, and water contact angle. [Pg.203]

Among these, some of the most frequently used are attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS), energy dispersive X-ray spectroscopy (EDS), optical microscopy, laser confocal scanning microscopy (LCSM), scanning electron microscopy (SEM), enviromnental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), contact angle measurement, and some evaluation methods for the biocompatibility of membrane surfaces. [Pg.55]

The samples were characterized by X-ray diffraction (XRD) transmission and high-resolution electron microscopy (TEM and HREM) microelectrophoresis X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA) secondary ion mass spectrometry (SIMS) and diffuse reflectance Fourier transform (DRIFT) infrared absorption spectroscopy. [Pg.544]


See other pages where Fourier transform infrared-reflectance transmission microscopy is mentioned: [Pg.445]    [Pg.445]    [Pg.100]    [Pg.261]    [Pg.364]    [Pg.365]    [Pg.386]    [Pg.231]    [Pg.50]    [Pg.231]    [Pg.2507]    [Pg.281]    [Pg.347]    [Pg.539]    [Pg.386]    [Pg.701]    [Pg.1397]    [Pg.154]    [Pg.52]    [Pg.34]    [Pg.17]    [Pg.536]    [Pg.459]   


SEARCH



Fourier transform infrared

Fourier transform infrared microscopy

Fourier transform infrared-reflectance transmission

Infrared reflective

Infrared transmission

Microscopy, infrared

Reflection transmission

Transformation reflection

Transmission microscopy

© 2024 chempedia.info