Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde secondary formation

Figure 4.24 Two amine-containing molecules can be crosslinked by formaldehyde through formation of a quaternary ammonium salt with subsequent dehydration to an immonium cation intermediate. This active species then can react with a second amine compound to form stable secondary amine bonds. Figure 4.24 Two amine-containing molecules can be crosslinked by formaldehyde through formation of a quaternary ammonium salt with subsequent dehydration to an immonium cation intermediate. This active species then can react with a second amine compound to form stable secondary amine bonds.
The reaction of aldehydes and ketones with Grignard reagents is a useful method of synthesising primary, secondary, and tertiary alcohols (Following fig.). Primary alcohols can be obtained from formaldehydes, secondary alcohols can be obtained from aldehydes, and tertiary alcohols can be obtained from ketones. The reaction involves the formation of a carbon-carbon bond and so this is an important way of building up complex organic structures from simple starting materials. [Pg.221]

The covalent self-assembly approach in the course of a Mannich-type condensation was used for the synthesis of P,N-containing cyclophanes with an amino-methylphosphine backbone. The condensations in the three-component systems primary phosphine/formaldehyde/secondary diamine with angular di(p-pheny-lene)methane spacer (or bis(4-amino-3-carboxyphenyl)methane) or with linear biphenylene spacers led to the formation of N-containing macrocyclic diphosphines 124 as a result of [2 -I- 2]-condensation (Scheme 12.48). The condensations were performed in DMF at the reagents concentrations of 0.1-0.3 M at 100-110 °C or at ambient temperature in the case of N-pyridylmethyl substituted diamines [122]. [Pg.405]

The Mannich Reaction involves the condensation of formaldehyde with ammonia or a primary or secondary amine and with a third compound containing a reactive methylene group these compounds are most frequently those in which the methylene group is activated by a neighbouring keto group. Thus when acetophenone is boiled in ethanolic solution with paraformaldehyde and dimethylamine hydrochloride, condensation occurs readily with the formation of... [Pg.261]

In the above reaction one molecular proportion of sodium ethoxide is employed this is Michael s original method for conducting the reaction, which is reversible and particularly so under these conditions, and in certain circumstances may lead to apparently abnormal results. With smaller amounts of sodium alkoxide (1/5 mol or so the so-called catal3rtic method) or in the presence of secondary amines, the equilibrium is usually more on the side of the adduct, and good yields of adducts are frequently obtained. An example of the Michael addition of the latter type is to be found in the formation of ethyl propane-1 1 3 3 tetracarboxylate (II) from formaldehyde and ethyl malonate in the presence of diethylamine. Ethyl methylene-malonate (I) is formed intermediately by the simple Knoevenagel reaction and this Is followed by the Michael addition. Acid hydrolysis of (II) gives glutaric acid (III). [Pg.912]

The addition of P—H bonds across a carbonyl function leads to the formation of a-hydroxy-substituted phosphines. The reaction is acid-cataly2ed and appears to be quite general with complete reaction of each P—H bond if linear aUphatic aldehydes are used. Steric considerations may limit the product to primary or secondary phosphines. In the case of formaldehyde, the quaternary phosphonium salt [124-64-1] is obtained. [Pg.380]

Primary and secondary amines are usually converted to tertiary amines using formaldehyde and hydrogen in the presence of a catalyst (eqs. 5 and 6). This process, known as reductive alkylation (222), is attractive commercially. The desired amines are produced in high yields and without significant by-product formation. Quatemization by reaction of an appropriate alkylating reagent then follows. [Pg.380]

Curing Catalysts for A Methylol Agents. Many acid-type catalysts have been used in finishing formulations to produce a durable press finish. Catalyst selection must take into consideration not only achievement of the desked chemical reaction, but also such secondary effects as influence on dyes, effluent standards, formaldehyde release, discoloration of fabric, chlorine retention, and formation of odors. In much of the industry, the chemical suppher specifies a catalyst for the agent so the exact content of the catalyst may not be known by the finisher. [Pg.444]

Acid-catalyzed aminomethylations of 5W-dibenz[/>,/]azepine (5) in ethanolic solution with formaldehyde and a secondary amine yield the 2-(aminoalkyl) derivatives, e.g. 6.186 If acetic acid is used as the solvent, however, then 2,8-bis(aminoaIkylatiou), e.g. formation of 7, results. [Pg.262]

DMSO or other sulfoxides react with trimethylchlorosilanes (TCS) 14 or trimefhylsilyl bromide 16, via 789, to give the Sila-Pummerer product 1275. Rearrangement of 789 and further reaction with TCS 14 affords, with elimination of HMDSO 7 and via 1276 and 1277, methanesulfenyl chloride 1278, which is also accessible by chlorination of dimethyldisulfide, by treatment of DMSO with Me2SiCl2 48, with formation of silicon oil 56, or by reaction of DMSO with oxalyl chloride, whereupon CO and CO2 is evolved (cf also Section 8.2.2). On heating equimolar amounts of primary or secondary alcohols with DMSO and TCS 14 in benzene, formaldehyde acetals are formed in 76-96% yield [67]. Thus reaction of -butanol with DMSO and TCS 14 gives, via intermediate 1275 and the mixed acetal 1279, formaldehyde di-n-butyl acetal 1280 in 81% yield and methyl mercaptan (Scheme 8.26). Most importantly, use of DMSO-Dg furnishes acetals in which the 0,0 -methylene group is deuter-ated. Benzyl alcohol, however, affords, under these reaction conditions, 93% diben-zyl ether 1817 and no acetal [67]. [Pg.201]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

The methylation of secondary amines works better than for primary amines because there is no competition between the formation of mono- or dimethylated products. The best results for the microwave-enhanced conditions were obtained when the molar ratios of substrate/formaldehyde/formic acid were 1 1 1, so that the amount of radioactive waste produced is minimal. The reaction can be carried out in neat form if the substrate is reasonably miscible with formic acid/aldehyde or in DM SO solution if not. Again the reaction is rapid - it is complete within 2 min at 120 W microwave irradiation compared to longer than 4 h under reflux. The reaction mechanism and source of label is ascertained by alternatively labeling the formaldehyde and formic acid with deuterium. The results indicate that formaldehyde contri-... [Pg.448]

Methylenediamines are readily synthesized from the reaction of secondary amines with formaldehyde. Many aliphatic amines are too basic for direct nitration without a chloride catalyst, and even then, nitrosamine formation can be a problem. Their conversion into intermediate methylenediamines before nitration is therefore a useful route to secondary nitramines. The success of these nitrolysis reactions is attributed to the inherent low basicity of the methylene-diamine nitrogens. [Pg.220]

Assuming that the above rationale for tertiary amine nitrosation was valid, we predicted 3) that the reaction of secondary amines with nitrite at milder pH s should be catalyzed by electrophilic carbonyl compounds, since secondary amines are known to form immonium ions on admixture with appropriate aldehydes and ketones. The prediction turned out to be true. Formaldehyde was shown to promote nitrosamine formation from a... [Pg.93]

The nature of the aromatic substituents is apparently not critical for SSRI activity, as indicated by the structure of duloxetine (23-5), where one ring is replaced by thiophene and the other by naphthalene. The synthesis starts as above by the formation of the Mannich base (23-1) from 1-acetyl thiophene with formaldehyde and dimethyl-amine. Treatment of that intermediate with the complex from lithium aluminum hydride and the 2R,3S entantiomer of dimethylamino-l,2-diphenyl-3-methyl-butane-2-ol gives the S isomer (23-2) in high enantiomeric excess. Treatment of the aUcoxide from (23-2) and sodium hydride with 1-fluoronaphthalene leads to the displacement of halogen and thus the formation of ether (23-2). The surplus methyl group is then removed by yet another variant of the von Braun reaction that avoids the use of a base for saponifying the intermediate urethane. Thus, reaction of (23-3) with trichloroethyl formate leads to the A -demethylated chlorinated urethane (23-4). Treatment of that intermediate with zinc leads to a loss of the carbamate and the formation of the free secondary amine duloxetine (23-5) [23]. [Pg.59]

The concept of a (bound) formaldehyde intermediate in CO hydrogenation is supported by the work of Feder and Rathke (36) and Fahey (43). Experiments under H2/CO pressure at 182-220°C showed that paraformaldehyde and trioxane (which depolymerize to formaldehyde at reaction temperatures) are converted by the cobalt catalyst to the same products as those formed from H2/CO alone. The rate of product formation is faster than in comparable H2/CO-only experiments, and product distributions are different, apparently because secondary reactions are now less competitive. However, Rathke and Feder note that the formate/alcohol ratio is similar to that found in H2/CO-only reactions (36). Roth and Orchin have reported that monomeric formaldehyde reacts with HCo(CO)4 under 1 atm of CO at 0°C to form glycolaldehyde, an ethylene glycol precursor (75). The postulated steps in this process are shown in (19)—(21), in which complexes not observed but... [Pg.345]

As early as 1910, Franchimont[16] observed that primary nitramines (and nitro-paraffins) react with formaldehyde and secondary amines (e.g. piperidine). The formation of aminomethylnitramines (IV) then occurs ... [Pg.7]

Formic acid, methyl formate, and CO were detected when photoreduction was performed in Ti silicalite molecular sieve using methanol as electron donor.173 Mechanistic studies with labeled compounds indicated, however, that CO originates from secondary photolysis of formic acid, whereas methyl formate emerges mainly from the Tishchenko reaction of formaldehyde, the initial oxidation product of methanol. [Pg.99]

All these catalytic results, however, were usually achieved at very low (2-3%) conversions. The only exception is a paper reporting up to 80% selectivity at 20% conversion over a M0CI5—R4Sn-on-silica olefin metathesis catalyst (700°C, 1 atm, CH4 air = l).42 In general, higher temperature and lower—about ambient— pressure compared to homogeneous oxidation, and high excess of methane are required for the selective formation of formaldehyde in catalytic oxidations.43 The selectivity, however, decreases dramatically at conversions above 1%, which is attributed to the decomposition and secondary oxidation of formaldehyde.43,44 It is a common observation that about 30% selectivity can be achieved at about 1% conversion. [Pg.431]


See other pages where Formaldehyde secondary formation is mentioned: [Pg.198]    [Pg.378]    [Pg.323]    [Pg.155]    [Pg.1273]    [Pg.144]    [Pg.108]    [Pg.337]    [Pg.1063]    [Pg.815]    [Pg.637]    [Pg.105]    [Pg.519]    [Pg.207]    [Pg.253]    [Pg.142]    [Pg.554]    [Pg.22]    [Pg.288]    [Pg.641]    [Pg.228]    [Pg.231]    [Pg.231]    [Pg.209]    [Pg.584]    [Pg.350]    [Pg.47]   
See also in sourсe #XX -- [ Pg.198 , Pg.199 ]




SEARCH



Formaldehyde formation

Secondary formation

© 2024 chempedia.info