Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde alcohol formation from

According to these values, under the conditions of the studied reaction the possible competitive formation of the allylic alcohols and the allylic alcohol esters, from thermod5mamic points of view, should lead to the esters being primary. One more argument in favor of the second mechanism is that the form of formaldehyde in trifluoroacetic acid medium is mono(trifluoroacetate) of methylenglycol. [Pg.84]

Phenol Alcohols. As has been previously pointed out, the simplest defimte reaction products of formaldehyde with phenols are the methylol-phenols or phenol alcohols. Although some of these derivath es are too reactive to be isolated, a number have been obtained as pure crystalline products. In some respects they are analogous to the methylol derivatives of aldehydes and ketones, a similarity which is readily demonstrated when the keto- or ortho- and para-quinoidal forms of the phenolic nucleus are designated in the structural formula. The mechanism of their formation from the primary phenolic hemifoniLals may involve tautomeric rearrangements of the sort indicated below ... [Pg.167]

Another method for the hydrogenoiysis of aryl bromides and iodides is to use MeONa[696], The removal of chlorine and bromine from benzene rings is possible with MeOH under basic conditions by use of dippp as a ligand[697]. The reduction is explained by the formation of the phenylpalladium methoxide 812, which undergoes elimination of /i-hydrogen to form benzene, and MeOH is oxidized to formaldehyde. Based on this mechanistic consideration, reaction of alcohols with aryl halides has another application. For example, cyclohex-anol (813) is oxidized smoothly to cyclohexanone with bromobenzene under basic conditions[698]. [Pg.249]

Resins. As mentioned above, both furfural and furfuryl alcohol are widely used in resin apphcations. Another resin former, 2,5-furandimethanol [1883-75-6] (BHME), is prepared from furfuryl alcohol by reaction with formaldehyde. It is usually not isolated because oligomerization occurs simultaneously with formation (competing reaction). Both the monomer and oligomers are very reactive owing to difuntionahty, and are used primarily as binders for foundry sand (72) and fiberglass insulation (147,148). [Pg.83]

Japanese workers have developed fibres from poly(vinyl alcohol). The polymer is wet spun from warm water into a concentrated aqueous solution of sodium sulphate containing sulphuric acid and formaldehyde, the latter insolubilising the alcohol by formation of formal groups. [Pg.391]

The dihydroxyacetone side chain is conveniently protected by forming 17a,20 20,21-bismethylenedioxy compounds (BMD) (92). Formation of llf -ethers as by-products from 11 -hydroxycompounds (91) can be limited by using formalin with a low methanol content, or better with paraformaldehyde as a source of alcohol-free formaldehyde. ... [Pg.400]

The initial step is the protonation of the aldehyde—e.g. formaldehyde—at the carbonyl oxygen. The hydroxycarbenium ion 6 is thus formed as reactive species, which reacts as electrophile with the carbon-carbon double bond of the olefinic substrate by formation of a carbenium ion species 7. A subsequent loss of a proton from 7 leads to formation of an allylic alcohol 4, while reaction with water, followed by loss of a proton, leads to formation of a 1,3-diol 3 " ... [Pg.233]

Apparent activation energies for the catalytic reactions were as expected about 80 kJ/mol for the formation of formaldehyde and 60 kJ/mol for the formation of acetaldehyde from the respective alcohols (Figure 3). The turnover rates of the samples were calculated either on the basis of the number of vanadiums (all of which could be assumed to be accessible) or by assuming that oxygen uptake counted the catalytic sites ... [Pg.339]

Further indirect evidence for the oxidation of the primary alcohol in 5 and the formation of glycoside 6 during the course of the reaction was obtained by electrospray mass spectrometry. Towards this end, excess formaldehyde was added to the reaction mixture after the oxidation of 5 into 6, and the resulting solution stirred for an additional 30 min at ambient temperature to form the instable intermediate 7 (eq 6). The unnatural sugar 5-hydroxymethyl-a-methylglucoside (8) is spontaneously derived from 7 at ambient temperature via a Cannizzarro-like reaction in the presence of excess formaldehyde (eq. 7). [Pg.459]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

Figure 5.6 Alcohols, aldehydes, ketones and acids 15, ethylene glycol 16, vinyl alcohol 17, acetaldehyde 18, formaldehyde 19, glyoxal 20, propionaldehyde 21, propionaldehyde 22, acetone 23, ketene 24, formic acid 25, acetic acid 26, methyl formate. (Reproduced from Guillemin et at. 2004 by permission of Elsevier)... Figure 5.6 Alcohols, aldehydes, ketones and acids 15, ethylene glycol 16, vinyl alcohol 17, acetaldehyde 18, formaldehyde 19, glyoxal 20, propionaldehyde 21, propionaldehyde 22, acetone 23, ketene 24, formic acid 25, acetic acid 26, methyl formate. (Reproduced from Guillemin et at. 2004 by permission of Elsevier)...
The nitrophenyl radical can react with the iodide ion and solvent, methanol, as well. Transference of hydrogen radical from methyl alcohol to nitrophenyl radical gives rise to nitrobenzene and formaldehyde (CHjOH —> CH2O). Though carefully sought among the products of the reaction, 3-iodonitro-benzene and 4-nitroanisole were lacking. This completely rejects another possible mechanism of the reaction, cine-substitution, which involves the formation of dehydrobenzene as described earlier. [Pg.215]

The concept of a (bound) formaldehyde intermediate in CO hydrogenation is supported by the work of Feder and Rathke (36) and Fahey (43). Experiments under H2/CO pressure at 182-220°C showed that paraformaldehyde and trioxane (which depolymerize to formaldehyde at reaction temperatures) are converted by the cobalt catalyst to the same products as those formed from H2/CO alone. The rate of product formation is faster than in comparable H2/CO-only experiments, and product distributions are different, apparently because secondary reactions are now less competitive. However, Rathke and Feder note that the formate/alcohol ratio is similar to that found in H2/CO-only reactions (36). Roth and Orchin have reported that monomeric formaldehyde reacts with HCo(CO)4 under 1 atm of CO at 0°C to form glycolaldehyde, an ethylene glycol precursor (75). The postulated steps in this process are shown in (19)—(21), in which complexes not observed but... [Pg.345]


See other pages where Formaldehyde alcohol formation from is mentioned: [Pg.27]    [Pg.384]    [Pg.305]    [Pg.212]    [Pg.384]    [Pg.171]    [Pg.212]    [Pg.87]    [Pg.154]    [Pg.59]    [Pg.199]    [Pg.13]    [Pg.637]    [Pg.37]    [Pg.375]    [Pg.28]    [Pg.207]    [Pg.238]    [Pg.61]    [Pg.431]    [Pg.175]    [Pg.340]    [Pg.32]    [Pg.164]    [Pg.9]    [Pg.300]    [Pg.45]    [Pg.228]    [Pg.350]    [Pg.386]    [Pg.409]    [Pg.175]    [Pg.114]    [Pg.96]    [Pg.99]   
See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Alcohols formation

Formaldehyde formation

© 2024 chempedia.info