Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Force Fourier-transform infrared

Food and Drug Administration forward-deployable, environmental and preventive medicine unit fleet Marine force Fourier transform infrared fiscal year... [Pg.190]

Impingement mixing, 200 Implants, bioresorbable, 27 Indentation force deflection (IFD) test, 244 Infrared (IR) spectroscopy, 91, 162, 300, 490. See also Fourier transform infrared (FTIR) spectrometry Ingold s classification, 60-61 Inherent viscosity, 161-162 Injection molding, of polyamides, 136,... [Pg.586]

Surface forces measurement is a unique tool for surface characterization. It can directly monitor the distance (D) dependence of surface properties, which is difficult to obtain by other techniques. One of the simplest examples is the case of the electric double-layer force. The repulsion observed between charged surfaces describes the counterion distribution in the vicinity of surfaces and is known as the electric double-layer force (repulsion). In a similar manner, we should be able to study various, more complex surface phenomena and obtain new insight into them. Indeed, based on observation by surface forces measurement and Fourier transform infrared (FTIR) spectroscopy, we have found the formation of a novel molecular architecture, an alcohol macrocluster, at the solid-liquid interface. [Pg.3]

There are several other techniques Uke the fluorescent dye displacement assays, footprinting, Fourier transform infrared spectroscopy. X-ray crystallography, electron microscopy, confocal microscopy, atomic force microscopy, surface plasmon resonance etc used for hgand-DNA interactions that are not discussed here. [Pg.173]

Recently, nonliving biomass of S. cucullata has been described as a low-cost absorbent of Cr(VI).106 Optimum conditions for the Cr(VI) adsorption by acid-treated S. cucullata were found out using a full factorial design. The Cr(VI) removal efficiency of the adsorbent was found to increase with the increase in time, temperature, adsorbate concentration, and stirring speed, and to decrease with increase in pH and adsorbent dose. The Fourier transform infrared spectroscopy (FT-IR) analysis revealed that in addition to electrostatic force, the adsorption may be due to... [Pg.398]

Mieroscopic visualization techniques have also been used to investigate mucus-polymer interactions [36-39]. Transmission electron microscopy was used by Fiebrig et al. [36], whereas different microscopical techniques were used by Lehr et al. [37] for the visualization of mucoadhesive interfaces. Transmission electron microscopy in combination with near-fleld Fourier transform infrared microscopy (FT-IR) has been shown to be suitable for investigating the adhesion-promoting effect of polyethyleneglycol added in a hydrogel [38]. Moreover, scanning force microscopy may be a valuable approaeh to obtain information on mueoadhesion and specific adhesion phenomena [39]. [Pg.177]

Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union... Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union...
Immersion of fatty acid films into solutions of metal ions, as already indicated, results in an intercalation of the metal ions into the planes formed by the carboxylate head groups of the fatty acids. This can be accomplished in M-FA films where the FA has been regenerated by exposure to H2S [Eq. (4)] or in FA films deposited without any metal ions. Subsequent exposure of the films to H2S has been shown to result in the formation of the metal sulfide. This intercalation/sulfidation (i/s) cycle can be repeated several times to increase the concentration of the metal sulfide in the film. This process has been investigated forCdS (34,39,42,43), PbS (39,43,44), ZnS (39,43), and HgS (45) produced in M-FA films, using Fourier-transform infrared (FTIR) and UV/visible spectroscopies, QCM gravimetry, and atomic force microscopy (AFM). [Pg.243]

Regarding the spatial aspects of the enzymatic degradation of CA-g-PLLA, a surface characterization [30] was carried out for melt-molded films by atomic force microscopy (AFM) and attenuated total-reflection Fourier-transform infrared spectroscopy (ATR-FTIR) before and after the hydrolysis test with proteinase K. As exemplified in Fig. 3 for a copolymer of MS = 22, the AFM study showed that hydrolysis for a few weeks caused a transformation of the original smooth surface of the test specimen (Fig. 3a) into a more undulated surface with a number of protuberances of 50-300 nm in height and less than a few micrometers in width (Fig. 3b). The ATR-FTIR measurements proved a selective release of lactyl units in the surface region of the hydrolyzed films, and the absorption intensity data monitored as a function of time was explicable in accordance with the AFM result. [Pg.106]

Of the dozen or so methods that have been used to examine the adsorption of biomolecules onto metals from solution, those most suited seem to be (1) cyclic voltrammetry, (2) ellipsometry, (3) Fourier transform infrared spectroscopy, and (4) atomic force microscopy. [Pg.420]

In the author s opinion, the better approach to experimentally study the morphology of the silica surface is with the help of physical adsorption (see Chapter 6). Then, with the obtained, adsorption data, some well-defined parameters can be calculated, such as surface area, pore volume, and pore size distribution. This line of attack (see Chapter 4) should be complemented with a study of the morphology of these materials by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning probe microscopy (SPM), or atomic force microscopy (AFM), and the characterization of their molecular and supramolecular structure by Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance (NMR) spectrometry, thermal methods, and possibly with other methodologies. [Pg.85]

Frictional Force Microscopy Fourier-transform infrared spectroscopy scanning electron microscope surface force apparatus Secondary ion mass spectroscopy scanning tunneling microscope X-ray photoelectron spectroscopy bovine serum albumin immunoglobulin G... [Pg.381]

Vibrational spectroscopy is an important tool for the characterization of various chemical species. Valuable information regarding molecular structures as well as intra- and intermolecular forces can be extracted from vibrational spectral data. Recent advances, such as the introduction of laser sources to Raman spectroscopy, the commercial availability of Fourier transform infrared spectrometers, and the continuing development and application of the matrix-isolation technique to a variety of chemical systems, have greatly enhanced the utility of vibrational spectroscopy to chemists. [Pg.231]

A new rheo-photoacoustic Fourier transform infrared cell has been developed to perform stress-strain studies on polymeric materials. The rheo-photoacoustic measurements lead to the enhancement of the photoacoustic signal and allow one to monitor the effect of elongational forces on the molecular structure of polymers. Propagating acoustic waves are detected as a result of infrared reabsorption and the deformational and thermal property changes upon the applied stress. [Pg.151]


See other pages where Force Fourier-transform infrared is mentioned: [Pg.224]    [Pg.602]    [Pg.364]    [Pg.365]    [Pg.469]    [Pg.480]    [Pg.198]    [Pg.23]    [Pg.76]    [Pg.69]    [Pg.277]    [Pg.596]    [Pg.161]    [Pg.224]    [Pg.250]    [Pg.155]    [Pg.190]    [Pg.211]    [Pg.650]    [Pg.415]    [Pg.367]    [Pg.265]    [Pg.331]    [Pg.290]    [Pg.292]    [Pg.330]   
See also in sourсe #XX -- [ Pg.52 , Pg.86 , Pg.107 , Pg.238 ]




SEARCH



Fourier transform infrared

© 2024 chempedia.info