Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

For chiral deriv of amino

Wang, H. et al.Sodium maleopimaric add as pseudostationary phase for chiral separations of amino acid derivatives by capillary micellar electrokinetic chromatography. J. Sep. Sci. 2007, 30, 2748-2753. [Pg.186]

He X, Cui X, Li M et al (2009) Highly enantioselective fluorescent sensor for chiral recognition of amino acid derivatives. Tetrahedron Lett 50 5853-5856... [Pg.213]

Diamide Chiral Separations. The first chiral stationary phase for gas chromatography was reported by GH-Av and co-workers in 1966 (113) and was based on A/-trifluoroacetyl (A/-TFA) L-isoleucine lauryl ester coated on an inert packing material. It was used to resolve the tritiuoroacetylated derivatives of amino acids. Related chiral selectors used by other workers included -dodecanoyl-L-valine-/-butylamide and... [Pg.70]

For the separation of amino acids, the applicability of this principle has been explored. For the separation of racemic phenylalanine, an amphiphilic amino acid derivative, 1-5-cholesteryl glutamate (14) has been used as a chiral co-surfactant in micelles of the nonionic surfactant Serdox NNP 10. Copper(II) ions are added for the formation of ternary complexes between phenylalanine and the amino acid cosurfactant. The basis for the separation is the difference in stability between the ternary complexes formed with d- or 1-phenylalanine, respectively. The basic principle of this process is shown in Fig. 5-17 [72]. [Pg.145]

Alternative routes to -amino acids have also been explored and involve, stereoselective alkylation of chiral derivatives of y9-alanine [136-140], Curtius rearrangement of enantiomerically pure and regioselectively protected substituted-succinic acids [134, 141, 142] (the approach is also suitable for the synthesis of y9 -amino acids [143]), or the formation of chiral isoxazolidinone intermediates [144]. [Pg.48]

Possible racemisation of imines, derivatives of amino acids and R(—)-myrtenal, has been examined by Dufrasne et al.1 After 72 h, no significant effect on chiral purity was observed. For imines being derivatives of chiral primary amines and the a-substituted 8-keto-aldehydes, no evidence of epimerisation has been indicated by the NMR measurements.3 For a series of imines, being derivatives of amino acids or amino acid esters and (R)-BINOL reagents, Chin et al.5 have tested the possibility of epimerization under experiment conditions. It was shown that R S ratio has changed only slightly, and after 24 h, the difference was lower than 10%. [Pg.140]

Alkylation of a-amino esters with 9-bromo-9-phenylf uorene serves as the principal step in the preparation of N-(9-phenylfluoren-9-yl)-a-amino carbonyl compounds which are useful chiral educts for asymmetric synthesis. A discussion of the synthetic utility of N-9-phenylfluoren-9-yl derivatives of amino adds and amino acid esters appears in the procedure following. [Pg.113]

General procedures for the synthesis of the imidazole core have been published in 2000. Solvent-free microwave assisted synthesis of 2,4,5-substituted imidazoles 64 from aldehydes 62 and 1,2-dicarbonyl compounds 63 in the presence of ammonium acetate and alumina has been reported <00TL5031>. V-protected a-amino glyoxals 65 were utilized as potential chiral educts for the synthesis of amino acid-derived imidazoles 66 <00TL1275>. [Pg.172]

An approach, similar to that employed in the analysis of tartrate mixtures, has been used for the chiral discrimination of amino acid (M/j/s) mixtures, using an amino acid of defined configuration as reference (S). The proton-bound trimers [S2-M H]+ form [S M H]+ and [S2H]+ fragments upon CID or MIKE decay (equations (9)-(12)). With two independent measurements of the fragmentation ratio [S-M-H] /[S2H] from either [S2-M -H] and [52-M5-H]" , the differences in binding energies can be determined. The relative gas phase basicities (GB) of the molecular pairs [S-M] and [S2] can be derived from equations (13) and (14). [Pg.199]

These enantioselective capillary columns showed extremely good performance in the CEC mode. Plate numbers in excess of 100,000 m could be easily achieved for a variety of amino acid derivatives (with chromophoric and fluorophoric labels) (Eigure 1.34a) as well as other chiral acids such as 2-aryloxycarboxylic acids. [Pg.93]

An experimental design approach was also used in Reference 26 for the chiral analysis of amino acid derivatives. The screening and optimization schedule followed... [Pg.180]

Perrin, C., Vargas, M.G, Vander Heyden, Y., Maftonh, M., Massarf D.L. Fast development of separation methods for the chiral analysis of amino acid derivatives using capillary electrophoresis and experimental designs. J. Chromatogr. A 2000, 883, 249-265. [Pg.209]

Amino acid enantiomers can be separated on a chiral stationary phase after derivatization with chloroformates (Abe et al., 1996). The derivatization procedure is quite simple and rapid, but the derivatizing reagent must be synthesized, which complicates the assay. Another method for the analysis of amino acid enantiomers uses N,0-pentafluoropropionyl isopropyl derivatives and a chiral column with NPD detection (Hashimoto et al., 1992). [Pg.9]

Enzymes may be used either directly for chiral synthesis of the desired enantiomer of the amino acid itself or of a derivative from which it can readily be prepared, or for kinetic resolution. Resolution of a racemate may remove the unwanted enantiomer, leaving the intended product untouched, or else the reaction may release the desired enantiomer from a racemic precursor. In either case the apparent disadvantage is that the process on its own can only yield up to 50% of the target compound. However, in a number of processes the enzyme-catalyzed kinetic resolution is combined with a second process that re-racemizes the unwanted enantiomer. This may be chemical or enzymatic, and in the latter case, the combination of two simultaneous enzymatic reactions can produce a smooth dynamic kinetic resolution leading to 100% yield. [Pg.72]


See other pages where For chiral deriv of amino is mentioned: [Pg.444]    [Pg.23]    [Pg.70]    [Pg.153]    [Pg.165]    [Pg.130]    [Pg.1091]    [Pg.289]    [Pg.81]    [Pg.22]    [Pg.22]    [Pg.25]    [Pg.550]    [Pg.141]    [Pg.217]    [Pg.582]    [Pg.161]   


SEARCH



Amino chirality

Chiral derivatives

For chiral deriv of amino acids

© 2024 chempedia.info