Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Foldy-Wouthuysen transformation relativistic

Our approach is based on a systematic semiclassical study of the Dirac equation. After separating particles and anti-particles to arbitrary powers in h, a semiclassical expansion of the quantum dynamics in the Heisenberg picture is developed. To leading order this method produces classical spin-orbit dynamics for particles and anti-particles, respectively, that coincide with the findings of Rubinow and Keller Hamiltonian relativistic (anti-) particles drive a spin precession along their trajectories. A modification of that method leads to a semiclassical equivalent of the Foldy-Wouthuysen transformation resulting in relativistic quantum Hamiltonians with spin-orbit coupling. [Pg.97]

Semiclassical methods from quantum mechanics with first-order relativistic corrections obtained from the Foldy-Wouthuysen transformation match with the weak relativistic limit of functionals obtained from quantum electrodynamics, neglecting the (spurious) Darwin terms. [Pg.208]

The first stage in deriving a molecular Hamiltonian is to reduce the Breit equation to non-relativistic form and Chraplyvy [17] has shown how this reduction can be performed by using an extension of the Foldy-Wouthuysen transformation. First let us remind ourselves of the most important features in the transformation of the Dirac Hamiltonian. The latter was written (see (3.57) and (3.58)) as... [Pg.105]

The weakly relativistic limit of the Hamiltonian (2.20) for fermions in external electric and magnetic fields can be derived with standard techniques, either by direct expansion or by a low order Foldy-Wouthuysen transformation. One obtains... [Pg.25]

SO coupling is a relativistic effect. The theory of the interaction of the magnetic moments of the electron spin and the orbital motion in one- and two-electron atoms has been formulated independently by Heisenberg and Pauli [12,13], shortly before the advent of the four-component Dirac theory of the electron [14]. Breit later has added the retardation correction [15]. The resulting Breit-Pauli SO operator, which can more elegantly be derived from the Dirac equation via a Foldy-Wouthuysen transformation [16], was thus well known for atoms since the early 1930s [17]. [Pg.78]

In the nonrelativistic context current-density functional theory is based on the nonrelativistic limits of the paramagnetic current (87) and/or the magnetization density (89) [128,129]. In the relativistic situation, however, a density functional approach relying on jp or m can only be considered an approximation, as long as the external magnetic field does not vanish. In order to clarify the relation between these two points of view the weakly relativistic limit of RDFT has to be analyzed. The weakly relativistic limit of the Hamiltonian (23) can be derived either by a direct expansion in 1/c or by a low order Foldy-Wouthuysen transformation,... [Pg.557]

That the perturbation theory (PT) of relativistic effects has not yet gained the popularity that it deserves, is mainly due to the fact that early formulations of the perturbation expansion in powers of were based on the Foldy-Wouthuysen transformation [11]. In this framework PT is not only formally rather tedious, it also suffers from severe singularities [12, 13], the controlled cancellation of which is only possible at low orders... [Pg.666]

Explicit inclusion of relativistic effects in valence-only calculations has been by far less frequently attempted. Datta, Ewig and van Wazer [135] used a Phillips-Kleinman PP in a study of PbO, whereas Ishikawa and Malli [136] tested PPs of semilocal form in four-component atomic DHF finite difference calculations. This work was extended by Dolg [137] to four-component molecular DHF calculations with a subsequent correlation treatment. In addition a complicated form of Vcv based on the Foldy-Wouthuysen transformation [138] was derived by Pyper [139] and applied in atomic calculations [140]. For all these approaches the computational effort is significantly higher than for the implicit treatment of relativity, and the gain of computational accuracy is not obvious at all. [Pg.819]

These problems can be solved if one starts from the (untruncated ) Foldy-Wouthuysen transformation for a free particle, the only case for which the transformation is known anal3d ically, and incorporates the effects of the external potential on top. Along these lines, the so-called Douglas-Kroll-HeB (DKH) method [61-64] is constructed which is probably the most successful quasi-relativistic method in wave function based quantum chemistry. No details will be given here since this topic has been extensively discussed in volume 1 [34] of this series. Meanwhile several density functional implementations exist based on the Douglas-Kroll-HeJ3 approach [39-45]. In recent years. [Pg.621]

One seemingly sensible approach to the relativistic electronic structure theory is to employ perturbation theory. This has the apparent advantage of representing supposedly small relativistic effects as corrections to a familiar non-relativistic problem. In Appendix 4 of Methods of molecular quantum mechanics, we find the terms which arise in the reduction of the Dirac-Coulomb-Breit operator to Breit-Pauli form by use of the Foldy-Wouthuysen transformation, broken into electronic, nuclear, and electron-nuclear effects. FVom a purely aesthetic point of view, this approach immediately looks rather unattractive because of the proliferation of terms at the first order of perturbation theory. To make matters worse, many of the terms listed are singular, and it is presumably the variational divergences introduced by these operators which are referred to in [2]. Worse still, higher-order terms in the Foldy-Wouthuysen transformation used in this way yield a mathematically invalid expansion. [Pg.21]

It must be emphasized that these expressions are still exact when compared to the original untransformed operator. The transformed operator /i would be completely decoupled if V = 0, i.e., if the particle were moving freely, and hence only the kinetic energy operator (apart from the rest energy term) remains. Thus, the even terms of the free-particle Foldy-Wouthuysen transformation already account for all so-called kinematic relativistic effects. [Pg.446]

Here Hd, is the Dirac Hamiltonian for a single particle, given by Eq. [30]. Recall from above that the Coulomb interaction shown is not strictly Lorentz invariant therefore, Eq. [59] is only approximate. The right-hand side of the equation gives the relativistic interactions between two electrons, and is called the Breit interaction. Here a, and a, denote Dirac matrices (Eq. [31]) for electrons i and /. Equation [59] can be cast into equations similar to Eq. [36] for the Foldy-Wouthuysen transformation. After a sequence of unitary transformations on the Hamiltonian (similar to Eqs. [37]-[58]) is applied to reduce the off-diagonal contributions, one obtains the Hamiltonian in terms of commutators, similar to Eq. [58]. When each term of the commutators are expanded explicitly, one arrives at the Breit-Pauli Hamiltonian, for a many-electron system " ... [Pg.120]

The relativistic correction to the potential is no more singular than the potential itself in this limit and therefore will support bound states. In the small momentum limit, when the electron is far from the nucleus, the potential goes as 1 /r and is therefore a short-range potential. It can be seen that the kinematic factors provide a cutoff to the potential that is absent in the Pauli approximation and that permits variational calculations with the free-particle Foldy-Wouthuysen transformed Hamiltonian. [Pg.305]

This is the equivalent of the second-order Douglas-KroU operator, but it only involves operators that have been defined in the free-particle Foldy-Wouthuysen transformation. As for the Douglas-Kroll transformed Hamiltonian, spin separation may be achieved with the use of the Dirac relation to define a spin-fi ee relativistic Hamiltonian, and an approximation in which the transformation of the two-electron integrals is neglected, as in the Douglas-Kroll-Hess method, may also be defined. Implementation of this approximation can be carried out in the same way as for the Douglas-Kroll approximation both approximations involve the evaluation of kinematic factors, which may be done by matrix methods. [Pg.313]

Notice that the kinetic relativistic correction applies to both the spin and orbital Zeeman terms, but the relativistic correction from the potential only affects the spin Zeeman term. These corrections are only the first in a truncated expansion, and for a better description of relativistic corrections we turn to the free-particle Foldy-Wouthuysen transformation and the higher transformations that are based on it. [Pg.320]

This chapter is devoted to the development of perturbation expansions in powers of 1 /c from the Dirac equation. In the previous chapter, the Pauli Hamiltonian was developed using the Foldy-Wouthuysen transformation. While this is an elegant method, it is probably simpler to make the derivation from the elimination of the small component with expansion of the denominator, and it is this approach that we use here. Another convenient approach is to make use of the modified Dirac equation in the limit of equality of the large and pseudo-large components. This approach enables us to draw on results from the modified Dirac approach in developing the two-electron terms of the Breit-Pauli Hamiltonian. We then demonstrate how the use of perturbation theory for relativistic corrections requires that multiple perturbation theory be employed for correlation effects and for properties. The last sections of this chapter are... [Pg.322]

The modified two-electron terms contain all the relativistic integrals, which means that the integral work is no different from that in the full solution of the Dirac-Hartree-Fock equations. It would save a lot of work if we could approximate the integrals, in the same way as we did for the Douglas-Kroll-Hess approximation. To do so, we must use the normalized Foldy-Wouthuysen transformation. The DKH approximation neglects the commutator of the transformation with the two-electron Coulomb operator, and in so doing removes all the spin-dependent terms. We must therefore also use a spin-free one-electron Hamiltonian. The approximate Hamiltonian (in terms of operators rather than matrices) is... [Pg.390]

To formalize these concepts, we first develop the frozen-core approximation, and then examine pseudoorbitals or pseudospinors and pseudopotentials. From this foundation we develop the theory for effective core potentials and ab initio model potentials. The fundamental theory is the same whether the Hamiltonian is relativistic or nonrela-tivistic the form of the one- and two-electron operators is not critical. Likewise with the orbitals the development here will be given in terms of spinors, which may be either nonrelativistic spin-orbitals or relativistic 2-spinors derived from a Foldy-Wouthuysen transformation. We will use the terminology pseudospinors because we wish to be as general as possible, but wherever this term is used, the term pseudoorbitals can be substituted. As in previous chapters, the indices p, q, r, and s will be used for any spinor, t, u, v, and w will be used for valence spinors, and a, b, c, and d will be used for virtual spinors. For core spinors we will use k, I, m, and n, and reserve i and j for electron indices and other summation indices. [Pg.397]

In performing the similarity transformation above, we have changed our representation of the particle from a Dirac representation to the so-called Foldy-Wouthuysen representation. This new representation provides a very simple link with the non-relativistic Schrodinger-Pauli representation. The latter, which is a two-component representation, just corresponds to the two upper components of the Foldy-Wouthuysen representation (3.125). It must be noted that under a similarity transformation such as (3.105), the operators which represent physical observables are also transformed. For example, the position observable whose operator is R in the Dirac representation is transformed to R " in the Foldy-Wouthuysen representation where... [Pg.87]

We start this chapter with a discussion of the non-relativistic limit (nrl) of relativistic quantum theory (section 2). The Levy-Leblond equation will play a central role. We also discuss the nrl of electrodynamics and study how properties differ at their nrl from the respective results of standard non-relativistic quantum theory. We then present (section 3) the Foldy-Wouthuysen (FW) transformation, which still deserves some interest, although it is obsolete as a starting point for a perturbation theory of relativistic corrections. In this context we discuss the operator X, which relates the lower to the upper component of a Dirac bispinor, and give its perturbation expansion. The presentation of direct perturbation theory (DPT) is the central part of this chapter (section 4). We discuss the... [Pg.667]


See other pages where Foldy-Wouthuysen transformation relativistic is mentioned: [Pg.451]    [Pg.313]    [Pg.370]    [Pg.260]    [Pg.77]    [Pg.207]    [Pg.93]    [Pg.305]    [Pg.664]    [Pg.202]    [Pg.451]    [Pg.621]    [Pg.37]    [Pg.77]    [Pg.62]    [Pg.294]    [Pg.298]    [Pg.439]    [Pg.461]    [Pg.71]    [Pg.2484]    [Pg.396]    [Pg.123]    [Pg.628]    [Pg.636]   


SEARCH



Foldy-Wouthuysen transformation

© 2024 chempedia.info