Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Folate purine biosynthesis

Mechanistic aspects of the action of folate-requiring enzymes involve one-carbon unit transfer at the oxidation level of formaldehyde, formate and methyl (78ACR314, 8OMI2I6OO) and are exemplified in pyrimidine and purine biosynthesis. A more complex mechanism has to be suggested for the methyl transfer from 5-methyl-THF (322) to homocysteine, since this transmethylation reaction is cobalamine-dependent to form methionine in E. coli. [Pg.325]

Several reactions of IMP biosynthesis require folate derivatives and glutamine. Consequently, antifolate drugs and glutamine analogs inhibit purine biosynthesis. [Pg.301]

Glycinamide ribonucleotide transformylase (GAR Tfase) is a folate-dependent enzyme essential to the de novo purine biosynthetic pathway. It utilizes the cofactor 10-formyl tetrahydrofohc acid (10-formyl-THF) to transfer a formyl group to the primary amine of its substrate a-glycinamide ribonucleotide. Potent, and potentially selective, inhibitors of GARTfase and de novo purine biosynthesis have been shown to be promising as antitumor drugs. [Pg.253]

A review on the potent inhibitors of de novo pyrimidine and purine biosynthesis summarizes the developments in this field <90MI 718-04) and another report is concerned mainly with the synthetic approaches to the various types of inhibitors of folate-dependent enzymes [Pg.729]

A. Pernicious anemia occurs when the stomach does not produce adequate intrinsic factor for absorption of vitamin B12, which is required for the conversion of methylmalonyl CoA to succinyl CoA and homocysteine to methionine. A vitamin B12 deficiency results in the excretion of methylmalonic acid and an increased dietary requirement for methionine. The methyl group transferred from vitamin B12 to homocysteine to form methionine comes from 5 -methyl tetrahydrofolate, which accumulates in a vitamin B12 deficiency, causing a decrease in folate levels and symptoms of folate deficiency, including increased levels of FIGLU and decreased purine biosynthesis. [Pg.271]

Once inside the cell, folates participate in a number of interconnected metabolic pathways involving (1) thymidine and purine biosynthesis necessary for DNA synthesis, (2) methionine synthesis via homocysteine remethylation, (3) methylation reactions involving S-adenosylmethionine (AdoMet), (4) serine and glycine interconversion, and (5) metabolism of histidine and formate (see Figure 8). Via these pathways. [Pg.754]

Folate analogues, such as methotrexate (Figure 27-3), are folate antagonists. They block production of FH2 and FH4 by dihydrofolate reductase and lead to diminished purine biosynthesis (inhibition of reactions 3 and 9 in Figure 27-8). Methotrexate also affects metabolism of amino acids and pyrimidine (inhibition of thymidylate synthesis) and inhibits DNA, RNA, and protein synthesis. It is effective in the treatment of breast cancer, cancer of the head and neck, choriocarcinoma, osteogenic sarcoma, and acute forms of leukemia. High doses of methotrexate can be tolerated provided that the patient also receives folinic... [Pg.626]

The transfer of 1-carbon units at this oxidation level originally was thought to involve two derivatives of H4-folate, 10-formyl-H4-folate and 5,10-methenyl-H4-folate which acted as cofactors for the two transformylases in de novo purine biosynthesis [67-69]. However, recent work has shown that the glycinamide ribonucleotide transformylase (GAR TFase) from E. coli as well as from avian liver utilize 10-formyl-H4-folate as the actual cofactor [70,71]. The preference for 10-for-myl-H 4-folate was masked by the presence of the opposite, unreactive diastereomer (R at C-6 in H4-folate) which is an excellent competitive inhibitor of the enzyme. The apparent reactivity of the 5,10-methenyl-H4-folate in the same assay arose because of a contaminating cyclohydrolase activity capable of selectively hydrolyzing it to the correct diastereomer of 10-formyl-H4-folate. [Pg.379]

Aminopterin 4-amino-4-deoxyfolic acid (see Vitamins, folic acid), a cytostatic agent used in the management of some caneers. It inhibits the enzyme dihy-drofolate reductase, which reduces the folate coenzymes required for Purine biosynthesis (see) and thymine production (see Pyrimidine biosynth is), and thus prevents DNA synthesis However, it is toxic to nondividing cells as well, and cannot be tolerated indefinitely. Methotrexate (amethopterin) has similar activity. [Pg.36]

Purine biosynthesis de novo was one of the hrst areas of metabolism in which a folic acid derivative was specifically identified as a cofactor in an enzymatic reaction. The ability of pigeon liver extracts to add formate to phosphoribosyl glycineamide was impaired by treatment with charcoal, but was restored by addition of H4-folate. Although the complicated interconversions of the Hrfolate coenzymes (see Chapter 5) caused confusion for some time, the specific one-carbon donor for this reaction was eventually identified as 5,10-methenyl H4-folate. The phosphoribosyl glycineamide formyltransferase reaction itself is irreversible. [Pg.106]

Recent studies using Salmonella typhimurium suggest either that its formyltransferase is atypical, or that it is not an obligate enzyme for purine biosynthesis in this organism. Mutants lacking this enzyme could not be found, nor could a folate coenzyme requirement for phosphoribosyl formyl-gycineamide synthesis be demonstrated [19). [Pg.106]

In summary, the biochemical function of folate coenzymes is to transfer and use these one-carbon units in a variety of essential reactions (Figure 2), including de novo purine biosynthesis (formylation of glycinamide ribonucleotide and 5-amino-4-imidazole carboxamide ribonucleotide), pyrimidine nucleotide biosynthesis (methylation of deoxyuridylic acid to thy-midylic acid), amino-acid interconversions (the interconversion of serine to glycine, catabolism of histidine to glutamic acid, and conversion of homocysteine to methionine (which also requires vitamin B12)), and the generation and use of formate. [Pg.214]

Inhibit Enzymes Many drugs are competitive inhibitors of key enzymes in pathways. The statin drugs (lovastatin, simvastatin), used to control blood cholesterol levels, competitively inhibit 3-hvdroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase in cholesterol biosynthesis. Methotrexate, an antineoplastic drug, competitively inhibits dihydrofolate reductase, depriving the cell of active folate needed for purine and deoxythymidine synthesis, thus interfering with DNA replication during S phase. [Pg.124]

A5-Methyltetrahydrofolate is the methyl-group donor substrate for methionine synthase, which catalyzes the transfer of the five-methyl group to the sulfhydryl group of homocysteine. This and selected reactions of the other folate derivatives are outlined in figure 10.15, which emphasizes the important role tetrahydrofolate plays in nucleic acid biosynthesis by serving as the immediate source of one-carbon units in purine and pyrimidine biosynthesis. [Pg.215]

Tetrahydrofolic acid (THF) is a coenzyme in the synthesis of purine bases and thymidine. These are constituents of DNA and RNA and are required for cell growth and replication. Lack of THF leads to inhibition of cell proliferation. Formation of THF from dihydrofolate (DHF) is catalyzed by the enzyme dihydrofolate reductase. DHF is made from folic acid, a vitamin that cannot be synthesized in the body but must be taken up from exogenous sources. Most bacteria do not have a requirement for folate, because they are capable of synthesizing it-more precisely DHF-ffom precursors. Selective interference with bacterial biosynthesis of THF can be achieved with sulfonamides and trimethoprim. [Pg.274]

The metabolism of folic acid involves reduction of the pterin ting to different forms of tetrahydrofolylglutamate. The reduction is catalyzed by dihydtofolate reductase and NADPH functions as a hydrogen donor. The metabolic roles of the folate coenzymes are to serve as acceptors or donors of one-carbon units in a variety of reactions. These one-carbon units exist in different oxidation states and include methanol, formaldehyde, and formate. The resulting tetrahydrofolylglutamate is an enzyme cofactor in amino acid metabolism and in the biosynthesis of purine and pyrimidines (10,96). The one-carbon unit is attached at either the N-5 or N-10 position. The activated one-carbon unit of 5,10-methylene-H folate (5) is a substrate of T-synthase, an important enzyme of growing cells. 5-10-Methylene-H folate (5) is reduced to 5-methyl-H,j folate (4) and is used in methionine biosynthesis. Alternatively, it can be oxidized to 10-formyl-H folate (7) for use in the purine biosynthetic pathway. [Pg.43]

The inability to absorb Vitamin B12 occms in pernicious anemia. In pernicious anemia intrinsic factor is missing. The anemia results from impaired DNA synthesis due to a block in purine and thymidine biosynthesis. The block in nucleotide biosynthesis is a consequence of the effect of vitamin B12 on folate metabolism. When vitamin B-12 is deficient essentially all of the folate becomes trapped as the N -methyltetrahydrofolate derivative as a result of the loss of functional methionine synthase. This trapping prevents the synthesis of other tetrahydrofolate derivatives. required for the purine and thymidine nucleotide biosynthesis pathways. [Pg.250]

Folic acid or the folate coenzyme [6] is a nutritional factor both for the parasites and the hosts. It exists in two forms, viz. dihydro- and tetrahydrofolic acids [4,5] which act as cofactors involved in the transfer of one carbon units like methyl, hydroxymethyl and formyl. The transfer of a one carbon unit is associated with de novo synthesis of purines, pyrimidines and amino acids. Mammals can not synthesize folate and, therefore, depend on preformed dietary folates, which are converted into dihydrofolate by folate reductase. Contrary to this, a number of protozoal parasites like plasmodia, trypanosomes and leishmania can not utilize exogenous folate. Consequently, they carry out a de novo biosynthesis of their necessary folate coenzymes [12]. The synthesis of various folates follows a sequence of reactions starting from 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine (1), which is described in Chart 4 [13,14]. [Pg.329]

Folate (foUc acid) is an essential vitamin which, in its active form of tetrahydrofolate (THF, Figure 4-1), transfers 1-carbon groups to intermediates in metaboUsm. Folate plays an important role in DNA synthesis. It is required for the de novo synthesis of purines and for the conversion of deoxyuridine 5-monophosphate (dUMP) to deoxythymidine 5 -monophosphate (dTMP). Additionally, folate derivatives participate in the biosynthesis of choline, serine, glycine, and methionine. However, in situations of folate deficiency, symptoms are not observed from the lack of these products as adequate levels of chohne and amino acids are obtained from the diet. (See also Case 3.)... [Pg.37]


See other pages where Folate purine biosynthesis is mentioned: [Pg.727]    [Pg.406]    [Pg.127]    [Pg.122]    [Pg.552]    [Pg.81]    [Pg.123]    [Pg.163]    [Pg.120]    [Pg.50]    [Pg.43]    [Pg.148]    [Pg.112]    [Pg.578]    [Pg.1172]    [Pg.717]    [Pg.204]    [Pg.802]    [Pg.805]    [Pg.63]    [Pg.150]    [Pg.272]    [Pg.390]    [Pg.148]    [Pg.802]    [Pg.805]   
See also in sourсe #XX -- [ Pg.500 , Pg.503 , Pg.504 , Pg.506 ]




SEARCH



Biosynthesis folate

© 2024 chempedia.info