Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Folate dietary factors

The enzyme mediating remethylation, 5-methyltetrahy-drofolate-betaine methyltransferase (Fig. 40-4 reaction 4), utilizes methylcobalamin as a cofactor. The kinetics of the reaction favor remethylation. Faulty remethylation can occur secondary to (1) dietary factors, e.g. vitamin B12 deficiency (2) a congenital absence of the apoenzyme (3) a congenital inability to convert folate or B12 to the methylated, metabolically active form (see below) or (4) the presence of a metabolic inhibitor, e.g. an antifolate agent that is used in an antineoplastic regimen. [Pg.675]

Measurement of blood tHcy is usually performed for one of three reasons (1) to screen for inborn errors of methionine metabolism (2) as an adjunctive test for cobalamin deficiency (3) to aid in the prediction of cardiovascular risk. Hyperhomocysteinemia, defined as an elevated level of tHcy in blood, can be caused by dietary factors such as a deficiency of B vitamins, genetic abnormalities of enzymes involved in homocysteine metabolism, or kidney disease. All of the major metabolic pathways involved in homocysteine metabolism (the methionine cycle, the transsulfuration pathway, and the folate cycle) are active in the kidney. It is not known, however, whether elevation of plasma tHcy in patients with kidney disease is caused by decreased elimination of homocysteine in the kidneys or by an effect of kidney disease on homocysteine metabolism in other tissues. Additional factors that also influence plasma levels of tHcy include diabetes, age, sex, lifestyle, and thyroid disease (Table 21-1). [Pg.230]

Participants in the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study included 9764 US men and women aged 25-74 years who were free of CVD at baseline. The results showed that relative risk of incidence of stroke events was lower among subjects with dietary folate intake in the highest quartile (405.0 pg/day) compared with those in the lowest quartile (99.0 pg/day), after adjustment for established cardiovascular risk factors and dietary factors (Bazzano et al. 2002). [Pg.522]

Homocysteine arises from dietary methionine. High levels of homocysteiae (hyperhomocysteinemia) are a risk factor for occlusive vascular diseases including atherosclerosis and thrombosis (81—84). In a controlled study, semm folate concentrations of <9.2 nmol/L were linked with elevated levels of plasma homocysteiae. Elevated homocysteine levels have beea associated also with ischemic stroke (9). The mechanism by which high levels of homocysteine produce vascular damage are, as of yet, aot completely uaderstood. lateractioa of homocysteiae with platelets or eadothehal cells has beea proposed as a possible mechanism. Clinically, homocysteine levels can be lowered by administration of vitamin B, vitamin B 2> foHc acid. [Pg.42]

Pernicious anemia arises when vitamin B,2 deficiency blocks the metabohsm of folic acid, leading to functional folate deficiency. This impairs erythropoiesis, causing immature precursors of erythrocytes to be released into the circulation (megaloblastic anemia). The commonest cause of pernicious anemia is failure of the absorption of vitamin B,2 rather than dietary deficiency. This can be due to failure of intrinsic factor secretion caused by autoimmune disease of parietal cells or to generation of anti-intrinsic factor antibodies. [Pg.492]

Vitamin Bn deficiency Deficiency, although rare, results in two serious problems megaloblastic anaemia (which is identical to that caused by folate deficiency) and a specific neuropathy called Bi2-associated neuropathy or cobalamin-deficiency-associated neuropathy (previously called, subacute combined degeneration of the cord). A normal healthy adult can survive more than a decade without dietary vitamin B12 without any signs of deficiency since it is synthesised by microorganisms in the colon and then absorbed. However, pernicious anaemia develops fairly rapidly in patients who have a defective vitamin B12 absorption system due to a lack of intrinsic factor. It results in death in 3 days. Minot and Murphy discovered that giving patients liver, which contains the intrinsic factor, and which is lightly cooked to avoid denaturation, cured the anaemia. For this discovery they were awarded the Nobel Prize in Medicine in 1934. [Pg.335]

Vitamins and minerals, whose main dietary sources are other than fruits and vegetables, are also likely to play a significant role in the prevention and repair of DNA damage, and thus are important to the maintenance of long-term health. Vitamin B12 is found in animal products, and deficiencies of B12 cause a functional folate deficiency, accumulation of the amino acid homocysteine (a risk factor for heart disease),46 and chromosome breaks. B12 supplementation above the RDA was necessary to minimize chromosome breakage.47 Strict vegetarians are at increased risk for developing vitamin B12 deficiency. [Pg.147]

Vitamin B12 consists of a porphyrin-like ring structure, with an atom of Co chelated at its centre, linked to a nucleotide base, ribose and phosphoric acid (6.34). A number of different groups can be attached to the free ligand site on the cobalt. Cyanocobalamin has -CN at this position and is the commercial and therapeutic form of the vitamin, although the principal dietary forms of B12 are 5 -deoxyadenosylcobalamin (with 5 -deoxyadeno-sine at the R position), methylcobalamin (-CH3) and hydroxocobalamin (-OH). Vitamin B12 acts as a co-factor for methionine synthetase and methylmalonyl CoA mutase. The former enzyme catalyses the transfer of the methyl group of 5-methyl-H4 folate to cobalamin and thence to homocysteine, forming methionine. Methylmalonyl CoA mutase catalyses the conversion of methylmalonyl CoA to succinyl CoA in the mitochondrion. [Pg.206]

Deficiencies of vitamin B12 can result from either low dietary levels or, more commonly, from poor absorption of the vitamin due to the failure of gastric parietal cells to produce intrinsic factor (as in pernicious anemia) or to a loss of activity of the receptor needed for intestinal uptake of the vitamin.5 Nonspecific malabsorption syndromes or gastric resection can also cause vitamin B12 deficiency. The vitamin may be administered orally (for dietary deficiencies), or intramuscularly or deep subcutaneously (for pernicious anemia). [Note Folic acid administration alone reverses the hematologic abnormality and thus masks the B12 deficiency, which can then proceed to severe neurologic dysfunction and disease. Therefore, megaloblastic anemia should not be treated with folic acid alone, but rather with a combination of folate and vitamin B12.] Therapy must be continued for the remainder of the life of a patient suffering from pernicious anemia. There are no known adverse effects of this vitamin. [Pg.216]

Although folate is widely distributed in foods, dietary deficiency is not uncommon, and a number of commonly used drugs can cause folate depletion. Marginal folate status is a factor in the development of neural tube defects and supplements of 400 fj,g per day periconceptually reduce the incidence of neural tube defects significantly. High intakes of folate lower the plasma concentration of homocysteine in people genetically at risk of hyperhomo-cysteinemia and may reduce the risk of cardiovascular disease, although as yet there is no evidence from intervention studies. There is also evidence that low folate status is associated with increased risk of colorectal and other cancers and that folate may be protective. Mandatory enrichment of cereal products with folic acid has been introduced in the United States and other countries, and considered in others. [Pg.270]

These studies are suggeshve of a protective effect of folic acid, but the final word regarding folic acid and NTDs is not yet available. Studies conducted with a general population in the United States have been less clear tlian those already mentioned. Epidemiological studies conducted in Boston and Ontario (Werler et ai.f 1996) and in California (Shaw cf ai, 1996) seemed not to support the notion that dietary folate intake influences NTD outcome, but did suggest that maternal obesity is a risk factor. A sun ey of about 600 mothers with an NTD birth revealed no reduction in risk factor with vitamin supplements (Mills cl ai., 1989), A scenario that seems to be emerging is as follows ... [Pg.515]

A study by Giovannucd cl al. (1995) revealed that low folate status can increase risk for colon cancer. This study was a prospective study that involved 47,931 males over the course of six years- Food intake was estimated by means of questionnaires. Low folate, alone, was found not to be associated with increased risk for colon cancer. However, when accompanied with (or combined with) low dietary methionine and regular alcohol intake, a dramatic risk for colon cancer was found. This risk ratio associated with the aforementioned three factors (low folate, low inethioninc, habitual alcohol) was 3.3. As noted elsewhere, risk ratios of greater than 2.0 or less than 0.5 are considered to be "convincing," and not merely "somewhat suggestive."... [Pg.909]

A. Pernicious anemia occurs when the stomach does not produce adequate intrinsic factor for absorption of vitamin B12, which is required for the conversion of methylmalonyl CoA to succinyl CoA and homocysteine to methionine. A vitamin B12 deficiency results in the excretion of methylmalonic acid and an increased dietary requirement for methionine. The methyl group transferred from vitamin B12 to homocysteine to form methionine comes from 5 -methyl tetrahydrofolate, which accumulates in a vitamin B12 deficiency, causing a decrease in folate levels and symptoms of folate deficiency, including increased levels of FIGLU and decreased purine biosynthesis. [Pg.271]

Folate is absorbed from dietary sources, such as those fisted above, mainly as reduced methyl- and formyl-tetrahy-dropteroylpolyglutamates. The bioavailabifity of folate from food sources is variable and dependent upon factors such as incomplete release firom plant cellular structure, entrapment in food matrix during digestion, inhibition of deglutamation by other dietary constituents, and possibly the degree of... [Pg.1109]

Folic acid or the folate coenzyme [6] is a nutritional factor both for the parasites and the hosts. It exists in two forms, viz. dihydro- and tetrahydrofolic acids [4,5] which act as cofactors involved in the transfer of one carbon units like methyl, hydroxymethyl and formyl. The transfer of a one carbon unit is associated with de novo synthesis of purines, pyrimidines and amino acids. Mammals can not synthesize folate and, therefore, depend on preformed dietary folates, which are converted into dihydrofolate by folate reductase. Contrary to this, a number of protozoal parasites like plasmodia, trypanosomes and leishmania can not utilize exogenous folate. Consequently, they carry out a de novo biosynthesis of their necessary folate coenzymes [12]. The synthesis of various folates follows a sequence of reactions starting from 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine (1), which is described in Chart 4 [13,14]. [Pg.329]


See other pages where Folate dietary factors is mentioned: [Pg.36]    [Pg.407]    [Pg.36]    [Pg.2385]    [Pg.217]    [Pg.327]    [Pg.72]    [Pg.36]    [Pg.337]    [Pg.608]    [Pg.376]    [Pg.172]    [Pg.173]    [Pg.204]    [Pg.263]    [Pg.172]    [Pg.86]    [Pg.146]    [Pg.153]    [Pg.170]    [Pg.363]    [Pg.270]    [Pg.634]    [Pg.36]   
See also in sourсe #XX -- [ Pg.40 , Pg.82 , Pg.89 ]




SEARCH



Dietary factors

© 2024 chempedia.info