Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescent dispersion

Table 3.7 Fluorescent disperse dyes from DyStar/BASF... Table 3.7 Fluorescent disperse dyes from DyStar/BASF...
J. Manz The theoretical method of Prof. Field (See Field et al., Intramolecular Dynamics in the Frequency Domain, this volume.) evaluates the fluorescence dispersion spectra of HCCH in terms of the Fourier transform of the autocorrelation function,... [Pg.601]

At such a pressure, the excited molecules undergo many collisions before radiating the questions addressed here concern both a description—in terms of state-dependent energy transfer rates—and a diagnostic exploitation of those collisions. In the experiments, OH in the partially burnt gases of a methane-air flame is excited to individual rotational levels of the v7 =0 vibrational level of the A2 state, and measurements of the resulting fluorescence dispersed through a monochromator provide populations of individual levels. [Pg.13]

Figure 1.9 Scanning electron micrographs of (a) 915 nm monodisperse particles of PI, (b) crystalline sample of 420 nm monodisperse particles of P2, (c) a CP particle P3 covered with aminated silica particles attached via EDC-NHS coupling to the carboxylic acid moiety of P3, and (d) 517 nm monodisperse particles of P4. Scale bars are 2 pm except for (c) where it is 200 nm. (e) Fluorescence spectra of dispersions of PI (left curve), P2 (middle, solid line curve), P3 (dashed middle, dashed line curve), and P4 (right curve) particles, (f) Photographs of fluorescent dispersions of P1-P4 (left to right) in water. Reprinted from [279] with permission from NPG. Figure 1.9 Scanning electron micrographs of (a) 915 nm monodisperse particles of PI, (b) crystalline sample of 420 nm monodisperse particles of P2, (c) a CP particle P3 covered with aminated silica particles attached via EDC-NHS coupling to the carboxylic acid moiety of P3, and (d) 517 nm monodisperse particles of P4. Scale bars are 2 pm except for (c) where it is 200 nm. (e) Fluorescence spectra of dispersions of PI (left curve), P2 (middle, solid line curve), P3 (dashed middle, dashed line curve), and P4 (right curve) particles, (f) Photographs of fluorescent dispersions of P1-P4 (left to right) in water. Reprinted from [279] with permission from NPG.
The resonance vector analysis has been used to explore all of the questions raised above on the fate of the polyad numbers in larger molecules, the most thoroughly investigated case so far probably being C2FI2- This molecule has been very extensively probed by absorption as well as stimulated emission pumping and dispersed fluorescence teclmiques [, 53, 70 and 71], the experimental spectra have been analysed in... [Pg.73]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

Figure Bl.22.11. Near-field scanning optical microscopy fluorescence image of oxazine molecules dispersed on a PMMA film surface. Each protuberance in this three-dimensional plot corresponds to the detection of a single molecule, the different intensities of those features being due to different orientations of the molecules. Sub-diffraction resolution, in this case on the order of a fraction of a micron, can be achieved by the near-field scaiming arrangement. Spectroscopic characterization of each molecule is also possible. (Reprinted with pennission from [82]. Copyright 1996 American Chemical Society.)... Figure Bl.22.11. Near-field scanning optical microscopy fluorescence image of oxazine molecules dispersed on a PMMA film surface. Each protuberance in this three-dimensional plot corresponds to the detection of a single molecule, the different intensities of those features being due to different orientations of the molecules. Sub-diffraction resolution, in this case on the order of a fraction of a micron, can be achieved by the near-field scaiming arrangement. Spectroscopic characterization of each molecule is also possible. (Reprinted with pennission from [82]. Copyright 1996 American Chemical Society.)...
Tunable visible and ultraviolet lasers were available well before tunable infrared and far-infrared lasers. There are many complexes that contain monomers with visible and near-UV spectra. The earliest experiments to give detailed dynamical infonnation on complexes were in fact those of Smalley et al [22], who observed laser-induced fluorescence (LIF) spectra of He-l2 complexes. They excited the complex in the I2 B <—A band, and were able to produce excited-state complexes containing 5-state I2 in a wide range of vibrational states. From line w idths and dispersed fluorescence spectra, they were able to study the rates and pathways of dissociation. Such work was subsequently extended to many other systems, including the rare gas-Cl2 systems, and has given quite detailed infonnation on potential energy surfaces [231. [Pg.2447]

Figure Cl.5.3. Near-field fluorescence image 4.5 p.m square) of single oxazine 720 molecules dispersed on die surface of a PMMA film. Each peak (fwhm 100 nm) is due to a single molecule. The different intensities are due to different molecular orientations and spectra. Reprinted widi pennission from Xie 11221. Copyright 1996 American Chemical Society. Figure Cl.5.3. Near-field fluorescence image 4.5 p.m square) of single oxazine 720 molecules dispersed on die surface of a PMMA film. Each peak (fwhm 100 nm) is due to a single molecule. The different intensities are due to different molecular orientations and spectra. Reprinted widi pennission from Xie 11221. Copyright 1996 American Chemical Society.
Figure Cl.5.9. Vibrationally resolved dispersed fluorescence spectra of two different single molecules of terrylene in polyetliylene. The excitation wavelengtli for each molecule is indicated and tlie spectra are plotted as the difference between excitation and emitted wavenumber. Each molecule s spectmm was recorded on a CCD detector at two different settings of tire spectrograph grating to examine two different regions of tlie emission spectmm. Type 1 and type 2 spectra were tentatively attributed to terrylene molecules in very different local environments, although tlie possibility tliat type 2 spectra arise from a chemical impurity could not be mled out. Furtlier details are given in Tchenio [105-1071. Figure Cl.5.9. Vibrationally resolved dispersed fluorescence spectra of two different single molecules of terrylene in polyetliylene. The excitation wavelengtli for each molecule is indicated and tlie spectra are plotted as the difference between excitation and emitted wavenumber. Each molecule s spectmm was recorded on a CCD detector at two different settings of tire spectrograph grating to examine two different regions of tlie emission spectmm. Type 1 and type 2 spectra were tentatively attributed to terrylene molecules in very different local environments, although tlie possibility tliat type 2 spectra arise from a chemical impurity could not be mled out. Furtlier details are given in Tchenio [105-1071.
Tchenio P, Myers A B and Moerner W E 1993 Dispersed fluorescence spectra of single molecules of pentacene in p-terphenyl J. Chem. Phys. 97 2491-3... [Pg.2508]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.
An alternative type of spectrometer is the energy dispersive spectrometer which dispenses with a crystal dispersion element. Instead, a type of detector is used which receives the undispersed X-ray fluorescence and outputs a series of pulses of different voltages that correspond to the different wavelengths (energies) that it has received. These energies are then separated with a multichannel analyser. [Pg.324]

Single vibronic level, or dispersed, fluorescence spectroscopy... [Pg.400]

Chemical analysis of the metal can serve various purposes. For the determination of the metal-alloy composition, a variety of techniques has been used. In the past, wet-chemical analysis was often employed, but the significant size of the sample needed was a primary drawback. Nondestmctive, energy-dispersive x-ray fluorescence spectrometry is often used when no high precision is needed. However, this technique only allows a surface analysis, and significant surface phenomena such as preferential enrichments and depletions, which often occur in objects having a burial history, can cause serious errors. For more precise quantitative analyses samples have to be removed from below the surface to be analyzed by means of atomic absorption (82), spectrographic techniques (78,83), etc. [Pg.421]

Elemental chemical analysis provides information regarding the formulation and coloring oxides of glazes and glasses. Energy-dispersive x-ray fluorescence spectrometry is very convenient. However, using this technique the analysis for elements of low atomic numbers is quite difficult, even when vacuum or helium paths are used. The electron-beam microprobe has proven to be an extremely useful tool for this purpose (106). Emission spectroscopy and activation analysis have also been appHed successfully in these studies (101). [Pg.422]

Emulsion—Suspension Polymerized Pigment Ink. Polymerization of a polar prepolymer as the internal phase in an oil-based external phase (24) gives a fluorescent ink base in which spherical fluorescent particles are dispersed. This base is suitable for Htho and letterpress inks (qv). An... [Pg.301]

Water-based flexo inks can be formulated with either a soluble toner or with the Day-Glo EPX Series which is a tme pigment and can be formulated like a conventional pigment dispersion. The Radiant Aquabest or the Day-Glo WST can be formulated in an alkaline water-soluble system to yield strong inks. They have limited shelf life and inferior fade, but do not necessarily requite additional binder. Day-Glo EPX must be formulated with a binder such as a hard resin or can be used with one of the soluble toners such as WST. The EPX Series has several advantages over soluble toners such as much superior fade, exceUent ink stabiHty, and some hiding power over kraft-type papers. A disadvantage of the EPX is its lower tinctorial strength than other fluorescent toners. [Pg.303]


See other pages where Fluorescent dispersion is mentioned: [Pg.175]    [Pg.430]    [Pg.175]    [Pg.430]    [Pg.451]    [Pg.481]    [Pg.74]    [Pg.1427]    [Pg.1842]    [Pg.1977]    [Pg.1990]    [Pg.2475]    [Pg.2495]    [Pg.2651]    [Pg.2690]    [Pg.702]    [Pg.123]    [Pg.377]    [Pg.377]    [Pg.377]    [Pg.401]    [Pg.362]    [Pg.420]    [Pg.118]    [Pg.212]    [Pg.300]    [Pg.301]    [Pg.10]    [Pg.54]    [Pg.55]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Dispersed fluorescence

© 2024 chempedia.info